首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.  相似文献   

2.
13C nuclear magnetic resonance (NMR) spectra were obtained at 50.3 and 100.5 MHz for methanolic and aqueous mixtures of sodium taurocholate, 1-monocapryloyl-rac-glycerol, and caprylic acid. Distortionless Enhancement by Polarization Transfer (DEPT) was used to improve spectral sensitivity and resolution, and to generate calibration curves for quantitative determinations of each lipid in methanol. Alternatively, the heights for nonoverlapping peaks in a 13C NMR spectrum acquired with inverse-gated decoupling provide reliable quantitative estimates for each component of the mixture, particularly when the data are obtained in methanol. These experiments also demonstrate the feasibility of detailed NMR structural investigations in model systems for glyceride digestion.  相似文献   

3.
Shand  C. A.  Cheshire  M. V.  Bedrock  C. N.  Chapman  P. J.  Fraser  A. R.  Chudek  J. A. 《Plant and Soil》1999,214(1-2):153-163
Solid-phase31P nuclear magnetic resonance (NMR) offers a direct means to determine the chemical environment of P present in soil and soil fractions. Iron is often a major component in soil and it has been thought that the presence of paramagnetic Fe and Mn in soil components is responsible for loss of resolution in NMR spectra. We have found that the resolution of signals in the solid-phase 31P NMR spectra of a Fe- and Mn-rich mineral soil was no worse than that for a series of four peat soils with a comparable concentration of P. Similarly, the resolution in the solid-phase 31P NMR spectra of the humic acid from the mineral soil was not much changed by extraction of the humic acid with acetylacetone in diethyl ether which removed around 40% of its Fe and 30% of its Mn. Removal of up to 50% of the Fe from organic rich, freeze-dried soil solutions from a soil catena with different land uses produced little change in spectral resolution. It was concluded that the limitations to resolution in solid-phase 31P NMR spectroscopy of soil humic substances do not stem from the presence of paramagnetic substances, but from the variable way P species are physically held in the amorphous milieu of the organic phase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
High-speed (14 kHz) solid-state magic angle spinning (MAS) 1H NMR has been applied to several membrane peptides incorporated into nondeuterated dilauroyl or dimyristoylphosphatidylcholine membranes suspended in H2O. It is shown that solvent suppression methods derived from solution NMR, such as presaturation or jump-return, can be used to reduce water resonance, even at relatively high water content. In addition, regioselective excitation of 1H peptide resonances promotes an efficient suppression of lipid resonances, even in cases where these are initially two orders of magnitude more intense. As a consequence, 1H MAS spectra of the peptide low-field region are obtained without interference from water and lipid signals. These display resonances from amide and other exchangeable 1H as well as from aromatic nonexchangeable 1H. The spectral resolution depends on the specific types of resonance and membrane peptide. For small amphiphilic or hydrophobic oligopeptides, resolution of most individual amide resonance is achieved, whereas for the transmembrane peptide gramicidin A, an unresolved amide spectrum is obtained. Partial resolution of aromatic 1H occurs in all cases. Multidimensional 1H-MAS spectra of membrane peptides can also be obtained by using water suppression and regioselective excitation. For gramicidin A, F2-regioselective 2D nuclear Overhauser effect spectroscopy (NOESY) spectra are dominated by intermolecular through-space connectivities between peptide aromatic or formyl 1H and lipid 1H. These appear to be compatible with the known structure and topography of the gramicidin pore. On the other hand, for the amphiphilic peptide leucine-enkephalin, F2-regioselective NOESY spectra mostly display cross-peaks originating from though-space proximities of amide or aromatic 1H with themselves and with aliphatic 1H. F3-regioselective 3D NOESY-NOESY spectra can be used to obtain through-space correlations within aliphatic 1H. Such intrapeptide proximities should allow determination of the conformation of the peptide in membranes. It is suggested that high-speed MAS multidimensional 1H NMR of peptides in nondeuterated membranes and in H2O can be used for studies of both peptide structure and lipid-peptide interactions.  相似文献   

5.
The NMR spectra of nucleic acids suffer from severe peak overlap, which complicates resonance assignments. 4D NMR experiments can overcome much of the degeneracy in 2D and 3D spectra; however, the linear increase in acquisition time with each new dimension makes it impractical to acquire high-resolution 4D spectra using standard Fourier transform (FT) techniques. The filter diagonalization method (FDM) is a numerically efficient algorithm that fits the entire multi-dimensional time-domain data to a set of multi-dimensional oscillators. Selective 4D constant-time HCCH-COSY experiments that correlate the H5-C5-C6-H6 base spin systems of pyrimidines or the H1'-C1'-C2'-H2' spin systems of ribose sugars were acquired on the (13)C-labeled iron responsive element (IRE) RNA. FDM-processing of these 4D experiments recorded with only 8 complex points in the indirect dimensions showed superior spectral resolution than FT-processed spectra. Practical aspects of obtaining optimal FDM-processed spectra are discussed. The results here demonstrate that FDM-processing can be used to obtain high-resolution 4D spectra on a medium sized RNA in a fraction of the acquisition time normally required for high-resolution, high-dimensional spectra.  相似文献   

6.
This paper deals with the nuclear magnetic resonance characterization of a soluble derivative (melanin free acid) of Sepia melanin obtained by a peroxidative treatment of the parent (insoluble) species. High resolution 13C and 15N solid state NMR spectroscopies allow the assessment of the chemical changes occurring in the macromolecule upon solubilization. 1H and 13C NMR solution spectra are discussed in light of the results obtained from the solid state spectra. Furthermore, the coordination properties of melanin have been investigated through 27Al NMR spectroscopy and proton relaxation enhancement studies of the paramagnetic gadolinium complex of melanin free acid. Through these experiments it has been possible to evaluate the molecular reorientational time tau R (and from it an estimated molecular weight close to 20 KDa) and the strength of the metal-macromolecule interaction.  相似文献   

7.
31P nuclear magnetic resonance (NMR) spectra of human low density lipoprotein (LDL) has been obtained and the major phospholipid components identified. Analysis of the spectra revealed two phospholipid environments: one occupied by 4/5 of the phospholipid with high resolution resonances possessing properties similar to phospholipids in vesicles, and a second occupied by 1/5 of the phospholipid with broad lines indicative of immobilization. Limited trypsin treatment of the particle cleaved all of the B peptide into smaller molecular weight peptides which remained with the particle. Trypsin-treated LDL eluted from a Sepharose CL-6B column similarly to native LDL so that the modified particle remained intact. 31P NMR spectra of trypsin-treated LDL showed little or no immobilized phospholipid. The immobilization in the native LDL particle is attributed to lipid-protein interactions between 1/5 of the phospholipid and the B peptide.  相似文献   

8.
We introduce the recursive multidimensional decomposition (R-MDD) method to speed recording of high-resolution NMR spectra. The measurement time is logarithmically dependent on the sizes of indirect spectral dimensions. R-MDD has the sensitivity and resolution advantages of optimized nonuniform acquisition schemes and is applicable to all types of biomolecular spectra. We demonstrated it for triple resonance experiments on three globular proteins (ubiquitin, azurin and the barstar-barnase complex) of 8-22 kDa.  相似文献   

9.
In the 1H NMR spectra obtained at 360 MHz after digital resolution enhancement, the multiplet resonances of the methyl groups in the basic pancreatic trypsin inhibitor (BPTI) were resolved. With suitable double irradiation techniques the individual methyl resonances were assigned to the different types of aliphatic amino acid residues. Furthermore, from pH titration and comparison of the native protein with chemically modified BPTI, the resonance lines of Ala 16 in the active site and Ala 58 at the C-terminus were identified. Potential applications of the resolved methyl resonances as natural NMR probes for studies of the molecular conformation are discussed.  相似文献   

10.
Though challenging, solution NMR spectroscopy allows fundamental interrogation of the structure and dynamics of membrane proteins. One major technical hurdle in studies of helical membrane proteins by NMR is the difficulty of obtaining sufficient long range NOEs to determine tertiary structure. For this reason, long range distance information is sometimes sought through measurement of paramagnetic relaxation enhancements (PRE) of NMR nuclei as a function of distance from an introduced paramagnetic probe. Current PRE interpretation is based on the assumption of Lorentzian resonance lineshapes. However, in order to optimize spectral resolution, modern multidimensional NMR spectra are almost always subjected to resolution-enhancement, leading to distortions in the Lorentizian peak shape. Here it is shown that when PREs are derived using peak intensities (i.e., peak height) and linewidths from both real and simulated spectra that were produced using a wide range of apodization/window functions, that there is little variation in the distances determined (< 1 Å at the extremes). This indicates that the high degree of resolution enhancement required to obtain well-resolved spectra from helical membrane proteins is compatible with the use of PRE data as a source of distance restraints. While these conclusions are particularly important for helical membrane proteins, they are generally applicable to all PRE measurements made using resolution-enhanced data.  相似文献   

11.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

12.
Summary Proton magnetic resonance (PMR) and carbon-13 magnetic resonance (CMR) spectra of intact, unsonicated yeast and rat liver motochondria show differences which may be correlated with the composition of the membranes. High resolution PMR and CMR signals in intact yeast mitochondria have been assigned to regions of fluid lipid-lipid interaction on the basis of spectra of extracted lipid and protein, and the temperature dependence of NMR signals from the intact membrane. PMR spectra suggest that about 20% of total yeast phospholipid is in regions where both intramolecular fatty acid chain mobility and lateral diffusion of entire phospholipid molecules are possible. No such regions appear to exist in rat liver mitochondria. For both yeast and rat liver mitochondria, comparison of PMR and CMR spectra suggests that about 50% of phospholipid appears to be in regions where intramolecular fatty acid chain motion is considerable, but lateral diffusion is restricted. The remaining phospholipid appears to have little inter- or intramolecular mobility. Since NMR observation of lipid extracts from membranes indicates that phospholipid-sterol interactions do not account for the spectra of intact mitochondria, these effects are interpreted in terms of extensive lipid-protein interactions.  相似文献   

13.
MiRP1 (MinK related protein 1) is a membrane protein in the KCNE family. It can associate with and modulate various voltage gated potassium channels. Mutations in human MiRP1 have been found to cause many congenital and acquired long QT syndromes, which are potentially life-threatening cardiac arrhythmias. Here, human MiRP1 was over-expressed in Escherichia coli, purified and eluted into different detergents. Two dimensional (1)H-(15)N correlated solution nuclear magnetic resonance (NMR) spectra of the human MiRP1 in four different detergent micelles indicated that high resolution solution NMR spectrum can be obtained for human MiRP1 in detergent lyso-myristoylphosphatidylglycerol (LMPG). Circular dichroism (CD) spectroscopy of human MiRP1 indicated a high content of alpha-helical secondary structure in LMPG. Backbone assignments of most MiRP1 residues were achieved through a series of triple resonance NMR experiments. Secondary structure analysis based on backbone chemical shifts showed several stretches of alpha-helices along the primary sequence of MiRP1 in LMPG.  相似文献   

14.
In the 1H NMR spectra obtained at 360 MHz after digital resolution enhancement, the multiplet resonances of the methyl groups in the basic pancreatic trypsin inhibitor (BPTI) were resolved. With suitable double irradiation techniques the individual methyl resonances were assigned to the different types of aliphatic amino acid residues. Furthermore, from pH titration and comparison of the native protein with chemically modified BPTI, the resonance lines of Ala 16 in the active site and Ala 58 at the C-terminus were identified. Potential applications of the resolved methyl resonances as natural NMR probes for studies of the molecular conformations are discussed.  相似文献   

15.
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein crystallization, leading, in X-ray diffraction experiments, to a blurring of the electron density map and reducing the resolution of the derived structure. Nuclear magnetic resonance (NMR) is known to be an alternative method to study molecular structure and dynamics. We designed and built a probe for phosphorus solid state NMR that allows for the first time to study static properties as well as dynamic processes in single-crystals of a protein by NMR spectroscopy. The sensitivity achieved is sufficient to detect the NMR signal from individual phosphorus sites in a 0.3mm(3) size single-crystal of GTPase Ras bound to the nucleotide GppNHp, that is, the signal from approximately 10(15) phosphorus nuclei. The NMR spectra obtained are discussed in terms of the conformational variability of the active center of the Ras-nucleotide complex. We conclude that, in the crystal, the protein complex exists in three different conformations. Magic angle spinning (MAS) NMR spectra of a powder sample of Ras-GppNHp show a splitting of one of the phosphate resonances and thus confirm this conclusion. The MAS spectra provide, furthermore, evidence of a slow, temperature-dependent dynamic exchange process in the Ras protein crystal.  相似文献   

16.
High resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopy was used to determine if the same cell line (MG-63 human osteosarcoma cells) grown in monolayer or as small (about 50-80 microm in diameter), three-dimensional tumor spheroids with no hypoxic center has different metabolic characteristics. Consequently, the (1)H NMR spectra were obtained from both types of cultures and then compared. The results indicate that the type of cellular spatial array determines specific changes in MG-63 cells. In particular, small but significant differences in lactate and alanine indicating a perturbation in energy metabolism were observed in the two cell models. In addition, although variations in CH(2) and CH(3) groups were also seen, it is not possible at this time to establish if lipid metabolism is truly different in cells and spheroids.  相似文献   

17.
The 31P high resolution NMR spectra of concentrated suspensions of Escherichia coli cells have been measured at 145.8 MHz. The position of the orthophosphate resonance is used as a measure of internal and external pH. In accord with Paddan, Zilberstein and Rottenberg ((1976) Eur. J. Biochem. 63, 533--541) it is shown that when properly energized the internal pH is 7.5 +/- 0.1. By synchronizing the NMR data acquisition with 3-s bursts of O2 it is possible to measure the internal pH with a time resolution of about 1 s. It is shown that at 20 degrees C the pH remains constant for times longer than 15 s after the oxygen is discontinued and it decays in several minutes.  相似文献   

18.
Esters of 1-(1-naphthly)ethylurea derivatives of L-valine, L-leucine, L-tert-leucine, and L-proline are examined as organic-soluble chiral nuclear magnetic resonance (NMR) resolving agents. The reagents are useful for resolving the spectra of chiral sulfoxides, amines, alcohols, and carboxylic acids. Enantiomeric resolution is caused by a combination of diastereomeric effects and the different association constants of the substrates with the resolving agents. Organic-soluble lanthanide species are added to resolving agent-substrate mixtures and often enhance the enantiomeric resolution. The enhancement occurs because the substrate that exhibits weaker binding with the resolving agent is more available to bond to the lanthanide. Broadening in the spectra with lanthanides is reduced at 50°C. Enantiomeric resolution is still observed at elevated temperatures. Chirality 9:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The characterization of the conformational properties of intrinsically disordered proteins (IDPs), and their interaction modes with physiological partners has recently become a major research topic for understanding biological function on the molecular level. Although multidimensional NMR spectroscopy is the technique of choice for the study of IDPs at atomic resolution, the intrinsically low resolution, and the large peak intensity variations often observed in NMR spectra of IDPs call for resolution- and sensitivity-optimized pulse schemes. We present here a set of amide proton-detected 3D BEST-TROSY correlation experiments that yield the required sensitivity and spectral resolution for time-efficient sequential resonance assignment of large IDPs. In addition, we introduce two proline-edited 2D experiments that allow unambiguous identification of residues adjacent to proline that is one of the most abundant amino acids in IDPs. The performance of these experiments, and the advantages of BEST-TROSY pulse schemes are discussed and illustrated for two IDPs of similar length (~270 residues) but with different conformational sampling properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号