首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synaptic vesicle protein synaptotagmin was proposed to act as a major docking site for the recruitment of clathrin coats implicated in endocytosis, including the recycling of synaptic vesicles. We show here that the C2B domain of synaptotagmin binds mu2- and alpha-adaptin, two of the four subunits of the endocytic adaptor complex AP-2. mu2 represents the major interacting subunit of AP-2 within this complex. Its binding to synaptotagmin is mediated by a site in subdomain B that is distinct from the binding site for tyrosine-based sorting motifs located in subdomain A. The presence of the C2B domain of synaptotagmin at the surface of liposomes enhances the recruitment of AP-2 and clathrin. Conversely, perturbation of the interaction between synaptotagmin and AP-2 by synprint, the cytoplasmic synaptotagmin-binding domain of N-type calcium channels, inhibits transferrin internalization in living cells. We conclude that a dual interaction of synaptotagmin with the clathrin adaptor AP-2 plays a key physiological role in the nucleation of endocytic clathrin-coated pits.  相似文献   

2.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

3.
The clathrin adaptor complex AP-2 functions in the assembly of clathrin-coated vesicles at the plasma membrane where it serves to couple endocytic vesicle formation to the selection of membrane cargo proteins. Recent evidence suggests that binding of tyrosine-based endocytic sorting motifs may induce a conformational change within the AP-2 adaptor complex that could enhance its interaction with other cargo molecules and with the membrane. We report here that soluble tyrosine-based endocytic sorting motif peptides facilitate clathrin/AP-2 recruitment to liposomal membranes and induce adaptor oligomerization even in the absence of a lipid bilayer. These effects are specific for endocytic motifs of the type Yxxphi whereas peptides corresponding to NPxY- or di-leucine-containing sorting signals are ineffective. Our data may help to explain how the highly cooperative assembly of clathrin and adaptors could be linked to the selection of membrane cargo proteins.  相似文献   

4.
Many plasma membrane proteins destined for endocytosis are concentrated into clathrin-coated pits through the recognition of a tyrosine-based motif in their cytosolic domains by an adaptor (AP-2) complex. The mu2 subunit of isolated AP-2 complexes binds specifically, but rather weakly, to proteins bearing the tyrosine-based signal. We now demonstrate, using peptides with a photoreactive probe, that this binding is strengthened significantly when the AP-2 complex is present in clathrin coats, indicating that there is cooperativity between receptor-AP-2 interactions and coat formation. Phosphoinositides with a phosphate at the D-3 position of the inositol ring, but not other isomers, also increase the affinity of the AP-2 complex for the tyrosine-based motif. AP-2 is the first protein known (in any context) to interact with phosphatidylinositol 3-phosphate. Our findings indicate that receptor recruitment can be coupled to clathrin coat assembly and suggest a mechanism for regulation of membrane traffic by lipid products of phosphoinositide 3-kinases.  相似文献   

5.
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.  相似文献   

6.
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid and efficient endocytosis. Since functionally active CFTR is found in purified clathrin-coated vesicles isolated from both cultured epithelial cells and intact epithelial tissues, we investigated the molecular mechanisms whereby CFTR could enter such endocytic clathrin-coated vesicles. In vivo cross-linking and in vitro pull-down assays show that full-length CFTR binds to the endocytic adaptor complex AP-2. Fusion proteins containing the carboxyl terminus of CFTR (amino acids 1404-1480) were also able to bind AP-2 but did not bind the Golgi-specific adaptor complex AP-1. Substitution of an alanine residue for tyrosine at position 1424 significantly reduced the ability of AP-2 to bind the carboxyl terminus of CFTR; however, mutation to a phenylalanine residue (an amino acid found at position 1424 in dogfish CFTR) did not perturb AP-2 binding. Secondary structure predictions suggest that Tyr(1424) is present in a beta-turn conformation, a conformation disrupted by alanine but not phenylalanine. Together, these data suggest that the carboxyl terminus of CFTR contains a tyrosine-based internalization signal that interacts with the endocytic adaptor complex AP-2 to facilitate efficient entry of CFTR into clathrin-coated vesicles.  相似文献   

8.
In previous work, we showed that peptides from endocytosed proteins containing the tyrosine YXXphi sorting motif are recognized by the mu 2 subunit of AP-2, the plasma membrane clathrin adaptor protein complex. This interaction is activated by phosphoinositide lipids that are phosphorylated at the D-3 position of the inositol ring, and is also enhanced by the formation of clathrin-AP-2 coats. Here, we describe the detection of a specific interaction between peptides containing a second sorting motif, the dileucine motif, and AP-1, the clathrin adaptor complex responsible for sorting proteins at the trans-Golgi network (TGN). Surprisingly, the site of dileucine binding is the beta1 subunit, not mu 1. A YXXphi-containing peptide from a protein trafficked within the TGN does bind to mu 1, however. Phosphatidylinositol 3,4-diphosphate and 3,4, 5-triphosphate did not activate the interaction between dileucine-containing peptides and AP-1 but instead inhibited it, and clathrin-AP-1 coat formation did not alter the interaction. Thus, there are at least two physically separate binding sites for sorting signals on APs, which are also regulated independently.  相似文献   

9.
Several intracellular membrane trafficking events are mediated by tyrosine-containing motifs within the cytosolic domains of integral membrane proteins. Many such motifs conform to the consensus YXXPhi, where Phi represents a bulky hydrophobic residue. This motif interacts with the medium chain (mu) subunits of adaptor complexes that link the cytosolic domains of integral membrane proteins to the clathrin coat involved in vesicle formation. The YXXPhi motif is similar to motifs in which the tyrosine residue is phosphorylated by tyrosine kinases. Tyrphostins (structural analogs of tyrosine) are inhibitors of tyrosine kinases and function by binding to the active sites of the enzymes. We previously showed that, in vitro and in yeast two-hybrid interaction assays, some tyrphostins can inhibit the interaction between YXXPhi motifs and the mu2 subunit of the AP-2 adaptor complex (Crump, C., Williams, J. L., Stephens, D. J., and Banting, G. (1998) J. Biol. Chem. 273, 28073-28077). A23 is such a tyrphostin. We now show that molecular modeling of tyrphostin A23 into the tyrosine-binding pocket in mu2 provides a structural explanation for A23 being able to inhibit the interaction between YXXPhi motifs and mu2. Furthermore, we show that A23 inhibited the internalization of (125)I-transferrin in Heb7a cells without having any discernible effect on the morphology of compartments of the endocytic pathway. Control tyrphostins, active as inhibitors of tyrosine kinase activity, but incapable of inhibiting the YXXPhi motif/mu2 interaction, did not inhibit endocytosis. These data are consistent with A23 inhibition of the YXXPhi motif/mu2 interaction in intact cells and with the possibility that different tyrphostins may be used to inhibit specific membrane trafficking events in eukaryotic cells.  相似文献   

10.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

11.
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.  相似文献   

12.
We recently determined that fusion proteins containing tyrosine-based endocytic signals bind to the mu 2 subunit of AP-2, the complex that drives clathrin coat formation and mediates endocytosis from the plasma membrane. Here we analyze the selectivity of peptide recognition by mu 2 and by AP-2 using combinatorial selection methods and surface plasmon resonance. Both mu 2 and AP-2 are shown to interact with various sequences of the form tyrosine-polar-polar-hydrophobic (Yppø) found on receptors that follow the clathrin pathway. The optimal sequence for interaction with mu 2 and with AP-2 has tyrosine as an anchor and prefers arginine at position Y + 2 and leucine at position Y + 3. In contrast, no preferred sequence is detected surrounding the Yppø signal, indicating that recognition of the Yppø endocytic signal does not require a prefolded structure. We conclude that sorting into the endocytic pathway is governed by a surprisingly simple interaction between the mu 2 chain and a tyrosine-containing tetrapeptide sequence.  相似文献   

13.
Endocytosis of membrane proteins is typically mediated by signals present in their cytoplasmic domains. These signals usually contain an essential tyrosine or pair of leucine residues. Both tyrosine- and dileucine-based endocytosis signals are recognized by the adaptor complex AP-2. The best understood of these interactions occurs between the tyrosine-based motif, YXXPhi, and the mu2 subunit of AP-2. We recently reported a tryptophan-based endocytosis signal, WLSL, contained within the cytoplasmic domain of the neonatal Fc receptor. This signal resembles YXXPhi. We have investigated the mechanism by which the tryptophan-based signal is recognized. Both interaction assays in vitro and endocytosis assays in vivo show that mu2 binds the tryptophan-based signal. Furthermore, the WLSL sequence binds the same site as YXXPhi. Unlike the WXXF motif, contained in stonin 2 and other endocytic proteins, WLSL does not bind the alpha subunit of AP-2. These observations reveal a functional similarity between the tryptophan-based endocytosis signal and the YXXPhi motif, and an unexpected versatility of mu2 function.  相似文献   

14.
During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxx? motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIV(mac239) Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIV(HxB2) also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxx? motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIV(mac239) Env GYxx? motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.  相似文献   

15.
To investigate the importance of tyrosine recognition by the AP-1B clathrin adaptor subunit mu1B for basolateral sorting of integral membrane proteins in polarized epithelial cells, we have produced and characterized a mutant form of mu1B. The mutant (M-mu1B) contains alanine substitutions of each of the four conserved residues, which in the AP-2 adaptor subunit micro2 are critical for interacting with tyrosine-based endocytosis signals. We show M-mu1B is defective for tyrosine binding in vitro, but is nevertheless incorporated into AP-1 complexes in transfected cells. Using LLC-PK1 cells expressing either wild type or M-mu1B, we find that there is inefficient basolateral expression of membrane proteins whose basolateral targeting signals share critical tyrosines with signals for endocytosis. In contrast, membrane proteins whose basolateral targeting signals are distinct from their endocytosis signals (transferrin and low-density lipoprotein receptors) accumulate at the basolateral domain normally, although in a manner that is strictly dependent on mu1B or M-mu1B expression. Our results suggest that mu1B interacts with different classes of basolateral targeting signals in distinct ways.  相似文献   

16.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

17.
Crump CM  Banting G 《FEBS letters》1999,444(2-3):195-200
Tyrosine based motifs conforming to the consensus YXXphi (where phi represents a bulky hydrophobic residue) have been shown to interact with the medium chain subunit of clathrin adaptor complexes. These medium chains are targets for phosphorylation by a kinase activity associated with clathrin coated vesicles. We have used the clathrin coated vesicle associated kinase activity to specifically phosphorylate a soluble recombinant fusion protein of mu2, the medium chain subunit of the plasma membrane associated adaptor protein complex AP-2. We have tested whether this phosphorylation has any effect on the interaction of mu2 with the tyrosine based motif containing protein, TGN38, that has previously been shown to interact with mu2. Phosphorylation of mu2 was shown to have no significant effect on the in vitro interaction of mu2 with the cytosolic domain of TGN38, indicating that reversible phosphorylation of mu2 does not play a role in regulating its direct interaction with tyrosine based internalisation motifs. In addition, although a casein kinase II-like activity has been shown to be associated with clathrin coated vesicles, we show that mu2 is not phosphorylated by casein kinase II implying that another kinase activity is present in clathrin coated vesicles. Furthermore the kinase activity associated with clathrin coated vesicles was shown to be capable of phosphorylating dynamin 1. Phosphorylation of dynamin 1 has previously been shown to regulate its interaction with other proteins involved in clathrin mediated endocytosis.  相似文献   

18.
Blot V  McGraw TE 《The EMBO journal》2006,25(24):5648-5658
Insulin slows GLUT4 internalization by an unknown mechanism. Here we show that in unstimulated adipocytes, GLUT4 is internalized by two mechanisms. Approximately 80% of GLUT4 is internalized by a mechanism that is sensitive to the cholesterol-aggregating drug nystatin, and is independent of AP-2 clathrin adaptor and two putative GLUT4 endocytic motifs. The remaining GLUT4 is internalized by an AP-2-dependent, nystatin-resistant pathway that requires the FQQI GLUT4 motif. Insulin inhibits GLUT4 uptake by the nystatin-sensitive pathway and, consequently, GLUT4 is internalized by the AP-2-dependent pathway in stimulated adipocytes. The phenylalanine-based FQQI GLUT4 motif promotes AP-2-dependent internalization less rapidly than a tyrosine-based motif, the classic form of aromatic-based motifs. Thus, both a change in the predominant endocytosis pathway and the specific use of a suboptimal internalization motif contribute to the slowing of GLUT4 internalization in insulin-stimulated adipocytes. Insulin also inhibits the uptake of cholera-toxin B, indicating that insulin broadly regulates cholesterol-dependent uptake mechanisms rather than specially targeting GLUT4. Our work thus identifies cholesterol-dependent uptake as a novel target of insulin action in adipocytes.  相似文献   

19.
Synaptotagmin is a multifunctional membrane protein that may regulate exo-endocytic cycling of synaptic vesicles at the presynaptic plasmalemma. Its C2B domain has been postulated to interact with a variety of effector molecules including acidic phospholipids, phosphoinositides, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), calcium channels, and the clathrin adaptor complex AP-2. Here we report that a basic motif within the C2B domain is required and sufficient for binding to AP-2 via its mu2 subunit and that this interaction is dependent on multimerization of the AP-2 binding site. Moreover, we show that upon fusion to a plasma membrane reporter protein this sequence is sufficient to target the chimeric molecule for internalization. We hypothesize that basic motifs within multimeric membrane proteins may represent a novel type of clathrin/AP-2-dependent endocytosis signal.  相似文献   

20.
Clathrin-mediated endocytosis depends upon the coordinated assembly of a large number of discrete clathrin coat components to couple cargo selection with rapid internalization from the cell surface. Accordingly, the heterotetrameric AP-2 adaptor complex binds not only to clathrin and select cargo molecules, but also to an extensive family of endocytic accessory factors and alternate sorting adaptors. Physical associations between accessory proteins and AP-2 occur primarily through DP(F/W) or FXDXF motifs, which engage an interaction surface positioned on the C-terminal platform subdomain of the independently folded alpha subunit appendage. Here, we find that the WXX(F/W)X(D/E) interaction motif found in several endocytic proteins, including synaptojanin 1, stonin 2, AAK1, GAK, and NECAP1, binds a second interaction site on the bilobal alpha appendage, located on the N-terminal beta sandwich subdomain. Both alpha appendage binding sites can be engaged synchronously, and our data reveal that varied assemblies of interaction motifs with different affinities for two sites upon the alpha appendage can provide a mechanism for temporal ordering of endocytic accessory proteins during clathrin-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号