首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The present studies were undertaken to precise the mechanism through which glucocorticoids enhance the responsiveness of ovine adrenocortical cells to ACTH. Experiments using intact cells and crude adrenal membranes have shown that, at the level of the adenylate cyclase system, dexamethasone increases the number of ACTH receptors without modification of the catalytic subunit or of the GTP binding regulatory components Gs and Gi. Cells cultured with dexamethasone secreted more pregnenolone and more corticosteroids in response to 8-BrcAMP than did control cells. By contrast, dexamethasone did not increase corticosterone secretion by cells incubated in the presence of 22-(R)-hydroxycholesterol or of exogenous pregnenolone. Dexamethasone neither affected the incorporation of [14C] acetate into cellular cholesterol nor the amount of cholesterol present in mitochondria of unstimulated cells. However, dexamethasone-treated cells incubated in the presence of both 8-BrcAMP and aminoglutethimide exhibited higher amounts of mitochondrial cholesterol than control cells. These data indicate that dexamethasone enhances the number of cellular ACTH receptors together with increasing the cAMP-induced translocation of cholesterol from the cytoplasm into mitochondria and/or mitochondrial storage of cholesterol.  相似文献   

2.
The effect of ACTH on nuclear volume of adrenocortical cells in the zona fasciculata of rat adrenal cortex was examined in vitro. Sections of adrenal gland were incubated for 60 or 90 min in Krebs-Ringer's solution with 1% glucose in the presence of ACTH, actinomycin D, cycloheximide and aminoglutethimide. ACTH, despite its clear effect in stimulating steroidogenesis, did not exert a direct effect on the nuclear volume of cells studied. This phenomenon is not dependent upon the stimulation of steroidogenesis, since aminoglutethimide does not influence the nuclear volume of adrenocortical cells studied; rather, ACTH in the presence of aminoglutethimide leads to a decrease in their volume. Actinomycin D does not influence nuclear volume while after incubation with cycloheximide nuclei were larger than the control. The presence of ACTH did not alter this effect. These results indicate no relationship between the degree of corticosterone output and nuclear volume in rat adrenocortical cells of the zona fasciculata in vitro.  相似文献   

3.
Bovine adrenocortical cells in monolayer culture produce cortisol and respond to corticotropin (ACTH) by an increase in cortisol secretion. Several lines of evidence are indicative that much of the cholesterol that serves as precursor for steroid hormone biosynthesis by these cells is derived from low-density lipoprotein (LDL) cholesterol that is taken up endocytotically by means of specific receptors localized in bovine adrenocortical plasma membranes. ACTH stimulated this process concomitant with an increase in steroid production. In the absence of LDL, ACTH had no effect on steroid biosynthesis. ACTH action in bovine adrenocortical cells resulted in an increase in the number of LDL receptor sites in the membrane fractions, whereas the dissociation constant for LDL binding was not changed. Chloroquine and NH4Cl, considered to be inhibitors of lysosomal degradative activity, caused an increase in the number of [125I]iodoLDL binding sites in the plasma membrane but the effect of ACTH was still apparent in the presence of these agents. These results are suggestive that the lifetime of the LDL receptor is increased when lysosomal activity is inhibited. When aminoglutethimide was added to block cholesterol side-chain cleavage activity and inhibit steroid production, the number of [125I]iodoLDL binding sites in the membrane fractions prepared from bovine adrenocortical cells cultured in the presence of ACTH was reduced to 50% of that in cells maintained in aminoglutethimide-free medium. However, under these conditions the number of binding sites was still significantly greater than in cells maintained in the absence of ACTH. The effects of aminoglutethimide on uptake and degradation of [125I]iodoLDL were similar to the effects on the number of [125I]iodoLDL binding sites. Based on these results, we conclude that the action of ACTH to stimulate LDL metabolism in bovine adrenocortical cells results from an increase in the number of LDL binding sites in the plasma membranes. This action of ACTH appears to be, at least in part, independent of cholesterol utilization for cortisol biosynthesis. However, the effect of aminoglutethimide is indicative that changes in the intracellular cholesterol concentration might modulate the action of ACTH to increase the number of LDL binding sites and therefore to stimulate LDL degradation.  相似文献   

4.
The roles of human low density lipoprotein (LDL)- cholesterol and high density lipoprotein (HDL)- cholesterol on adrenal steroidogenesis were investigated using cultured human adult and fetal adrenocortical cells and the findings were then compared to those obtained with bovine adrenocortical cells. The secretion of cortisol in both human and bovine adrenocortical cells was dose-dependently increased by the administration of LDL- or HDL-cholesterol in the presence of adrenocorticotropin (ACTH). LDL-cholesterol was utilized to a greater extent than HDL-cholesterol in both human and bovine adrenal steroidogenesis in the presence of ACTH. Exogenous lipoprotein-derived cholesterol was less utilized in human adrenal steroidogenesis than in bovine adrenal steroidogenesis, compared to the endogenous cholesterol. An increase in the secretion of cortisol and dehydroepi androsterone sulfate (DHEA-S) continued for the 5-day culture period, in the presence of lipoprotein cholesterol and ACTH in both human adult and fetal adrenocortical cells. The secretion of aldosterone increased on the first day of the culture period, then gradually decreased for the 5-day culture period in human adult adrenocortical cells, but not in human fetal adrenocortical cells in the presence of lipoprotein cholesterol and ACTH. These findings demonstrate that exogenous cholesterol utilized in the biosynthesis of steroids is mainly from LDL-cholesterol in both human adult and fetal adrenals and bovine adrenal and the proportion of cholesterol synthesized de novo is significantly larger in the human adult adrenal than in the bovine adrenal.  相似文献   

5.
Addition of rat or human high density lipoproteins (HDL) or human low density lipoproteins (LDL) to rat adrenocortical cells in vitro was found to enhance steroid production and increase cell cholesterol content. These effects of HDL were not observed in cultured mouse Y-1 adrenal cells, suggesting that rat adrenal cells possess a specific mechanism for uptake of HDL cholesterol not found in Y-1 cells. The effects of HDL were most marked on cells previously stimulated with adrenocorticotropin (ACTH) and depleted of their endogenous cholesterol stores. Such cells were prepared either by treatment in vivo with 4-aminopyrazolopyrimidine or in vitro with ACTH (10(-7) M) in lipoprotein-poor media. Steroid production by treated cells exhibited a saturable dependence on media HDL concentration. In addition to enhancing ACTH stimulated steroid production, addition of HDL also resulted in a saturable concentration-dependent increase in cell cholesterol content. Both aminoglutethimide and cycloheximide were found to inhibit HDL-enhanced steroid production. Finally, addition of HDL to short term incubations (5 1/2 h) of ACTH-treated cells caused no change in the rate of incorporation of 14C-acetate into cholesterol or corticosterone. These results indicate that rat adrenocortical cells possess a specific, saturable, ACTH-dependent mechanism for uptake of HDL cholesterol. Moreover, cellular uptake of HDL cholesterol exceeded by at least 4-fold the amount of cholesterol associated with HDL apoprotein degraded by the cells, suggesting that utilization of HDL cholesterol does not require endocytosis and lysosomal degradation of the entire HDL particle.  相似文献   

6.
R Benis  P Mattson 《Tissue & cell》1989,21(4):479-494
In adrenocortical cells, the first step in the enzymatic processing of cholesterol to steroid end products occurs in the mitochondria. ACTH increases mitochondrial cholesterol and steroidogenesis. In cultured mouse adrenocortical tumor cells, microtubule-based organelle motility may increase the proximity of mitochondria to the SER, lipid droplets and endoscome-derived lysosomes, thereby facilitating the transfer of cholesterol from these organelles to the mitochondrial outer membrane. ACTH may increase opportunities for the transfer by promoting organelle motility and by increasing the number of lysosomes. Taxol, a microtubule polymerizer, inhibits basal and ACTH-induced steroidogenesis in these cells, presumably at the step where mitochondria obtain cholesterol. We examined the ultrastructure of taxol-treated, unstimulated and ACTH-stimulated cells, seeking alterations which conceivably could interefer with the proposed organelle transport and encounters, and thus correlate with taxol's inhibition of steroidogenesis. Primary cultured cells were incubated in serum-containing medium for 4 hr with and without ACTH (10 mU/ml), with 10 micrograms/ml and 50 micrograms/ml of taxol, and with ACTH and taxol 10 or taxol 50 simultaneously. Culture media were analyzed for the presence of secreted steroids at the end of 1, 2, and 4 hr of incubation. At the end of the fourth hour, unstimulated cells and cells treated with ACTH, taxol 50, and both agents simultaneously, were fixed and processed for EM. Taxol inhibited basal and ACTH-induced steroidogenesis in a dose-dependent fashion. In both unstimulated and ACTH-stimulated cells, taxol 50 formed numerous microtubule bundles, but did not markedly change the distribution of mitochondria and lipid droplets. SER tubules, and clusters of Golgi fragments, endosomes, and lysosomes appeared to be translocated towards the cell periphery along some of the microtubules. Taxol permitted an ACTH-induced cell rounding and microfilament rearrangement considered to facilitate organelle motility. Our data indicate that taxol disrupts the formation of lysosomes by these adrenal cells, but it seemed unlikely that taxol's ultrastructural effects could prevent organelle transport proposed to cause meetings between mitochondria and the SER or lipid droplets, or prevent ACTH-caused increases in these encounters. Taxol may instead prevent the transfer of lipid droplet or SER-contained cholesterol to adjacent mitochondria, by a means not detectable in our electron micrographs.  相似文献   

7.
Among extrahepatic tissues the adrenal gland has one of the highest concentrations of apoE mRNA and the highest rate of apoE synthesis. In the present investigation several previously described in vivo treatments were used to assess the relationship between apoE expression and cellular cholesterol in the rat adrenal gland. Treatment of rats with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) to lower serum cholesterol concentration and deplete adrenal gland cholesterol content decreased adrenal gland apoE mRNA concentration. These adrenal responses were blocked by dexamethasone (DEX) suggesting that the effect of 4-APP occurred indirectly via stimulation of the adrenal gland by endogenous adrenocorticotrophic (ACTH). Relative to control rats, DEX treatment increased both adrenal gland cholesterol content and apoE mRNA concentration. Concurrent ACTH and DEX administration reduced both adrenal gland cholesterol content and apoE mRNA concentration relative to DEX-treated rats. ACTH administration also rapidly decreased adrenal gland apoE mRNA concentration and cholesterol content in rats pretreated with DEX. In all the above experiments, adrenal gland cholesterol content and apoE mRNA concentration were positively correlated (r = 0.78, P = 0.0001). In contrast, aminoglutethimide treatment, which blocks adrenal gland steroidogenesis and greatly increases adrenal gland cholesterol content, was without effect on apoE mRNA concentration. ACTH administration to rats treated with DEX + aminoglutethimide resulted in decreased adrenal apoE mRNA despite greatly increased adrenal cholesterol content. This uncoupling of adrenal gland cholesterol content and apoE mRNA concentration suggests that apoE mRNA expression and cellular cholesterol are regulated independently by ACTH.  相似文献   

8.
ACTH regulation of cholesterol movement in isolated adrenal cells   总被引:3,自引:0,他引:3  
Confluent bovine adrenal cell primary cultures respond to stimulation by adrenocorticotropin (ACTH) to produce steroids (initially predominantly cortisol and corticosterone) at about one-tenth of the output of similarly stimulated rat adrenal cells. The early events of steroidogenesis, following ACTH stimulation, have been investigated in primary cultures of bovine adrenal cortical cells. Steroidogenesis was elevated 4-6-fold within 5 min of exposure to 10(-7) M ACTH and increased linearly for 12 h and declined thereafter. Cholesterol side-chain cleavage (SCC) activity was increased 2.5-fold in mitochondria isolated from cells exposed for 2 h to ACTH and 0.5 mM aminoglutethimide (AMG), even though cytochrome P-450scc only increases after 12 h. Mitochondrial-free cholesterol levels increased during the same time period (16.5-25 micrograms/mg of protein), but then both cholesterol levels and SCC activity declined in parallel. More prolonged exposure to ACTH prior to addition of AMG caused the elevation in mitochondrial cholesterol to more than double, possibly due to enhanced binding capacity. Early ACTH-induced effects on cellular steroidogenesis result from these changes in mitochondrial-free cholesterol. The maximum rate of cholesterol transport to mitochondria in AMG-blocked cells was consistent with the maximum rate of cellular steroidogenesis. Cycloheximide (0.2 mM) rapidly blocked (less than 10 min) cellular steroidogenesis, cholesterol SCC activity, and access of cholesterol to cytochrome P-450scc without affecting mitochondrial-free cholesterol. Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8) M), for 24 h prior to ACTH addition decreased the rates of ACTH- and cAMP-stimulated steroidogenesis but did not affect the basal rate. In both cases, the effectiveness of TCDD increased with time of exposure to the stimulant. Although cholesterol accumulated in the presence of ACTH and AMG (13-28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13-8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). Since even in the absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h) TCDD pretreatment may increase the presence of a protein(s) that cause this mitochondrial-cholesterol depletion following stimulation by ACTH or cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The long term effect of adrenocorticotropin (ACTH) on the synthesis of adrenodoxin in bovine adrenocortical cells was investigated. Primary, confluent monolayer cultures of adult bovine adrenocortical cells were incubated in the presence or absence of ACTH (10(-6) M) for periods up to 72 h. The amount of adrenodoxin precursor synthesized in a cell-free translation system programmed with RNA isolated from ACTH-treated cells increased to approximately 3 times the control level by 36 h. Similarly, ACTH increased the rate of incorporation of [35S]methionine into mature adrenodoxin in radiolabeled adrenocortical cells, an effect that was maximal 36 h after initiation of ACTH treatment. At longer times (48-72 h), the stimulatory effect of ACTH was not maintained, and adrenodoxin synthesis in both radiolabeled cells and cell-free translation systems declined to control levels. The content of adrenodoxin in cells treated with ACTH for 36 h, as measured by electron paramagnetic resonance spectroscopy, was approximately twice that in control cells. The results indicate that ACTH induces the synthesis of adrenodoxin in bovine adrenocortical cells. Based on the present results as well as those previously reported with respect to the induction of cholesterol side chain cleavage cytochrome P-450 by ACTH (DuBois, R. N., Simpson, E. R., Kramer, R. E., and Waterman, M. R. (1981) J. Biol. Chem. 256, 7000-7005), it is proposed that the synthesis of the mitochondrial components of the adrenocortical steroid hydroxylase system is controlled by ACTH in a coordinate fashion.  相似文献   

10.
Summary To define the role of endogenously synthesized cholesterol in the differentiation of adrenocortical cells in primary culture, fetal rat adrenal cells were cultured in the presence of exogenous cholesterol (serum-supplemented medium) or in the absence of it (serum-free medium or lipoprotein-free medium). Ultrastructurally the cells had features of glomerulosa cells: mitochondria were oval or rod shaped with lamellar inner membranes. The amount of smooth endoplasmic reticulum was small, and lipid droplets were few. When the cells were cultured in serum-free medium some intracytoplasmic vacuoles were seen. The undifferentiated zona glomerulosa-like cells secreted low amounts of corticosterone and 18-OH-deoxycorticosterone (18-OH-DOC) in all three media (serum-supplemented medium, serum-free medium, and lipoprotein-free medium). Stimulation of the adrenocortical cells with ACTH induced the ultrastructural features of differentiated zona fasciculata-like cells. Mitochondrial inner membranes were well developed in lipoprotein-free medium, but not in serum-free medium. The amount of intracellular lipids was increased in both media devoid of cholesterol. In the ACTH stimulated cultures the presence of exogenous cholesterol resulted in increased secretions of corticosterone and 18-OH-DOC. In the absence of an exogenous source of cholesterol, the amounts of steroids secreted were only half of that secreted in the presence of serum-supplemented medium. Endogenously synthesized cholesterol is sufficient for the morphologic differentiation of fetal rat adrenocortical cells under ACTH stimulation. However, without exogenously provided cholesterol, the steroid production accounts only for half of the maximal output achieved using serum-supplemented medium. This work was supported by Finnish Culture Foundation.  相似文献   

11.
Rat adrenocortical cells were incubated with labeled arachidonate, and the radioactivity in unesterified fatty acids was reduced by washing with 2% albumin solutions. These cells were then incubated for two hours in the absence and presence of 7.1 x 10(-10)M ACTH. During subsequent incubation of prelabeled cells with ACTH, both the mass and radioactivity of arachidonate in adrenocortical cholesteryl esters was depleted to the same extent (30--32%). The released arachidonate was in part incorporated into phospholipids, and there was also a significant increase in unesterified arachidonic acid. During this period, there was also increased incorporation of arachidonate into labeled prostaglandins. Of this increase, 92% by isotope analysis, and 88% by radioimmunoassay techniques was attributable to prostaglandins of the E pathway. These data demonstrate that prostaglandin E synthesis is specifically increased during ACTH stimulation of rat adrenocortical cells and suggest that a major source of the arachidonate substrate for this synthesis is derived from hormone-dependent hydrolysis of cortical cholesteryl esters.  相似文献   

12.
R Benis  P Mattson 《Tissue & cell》1989,21(5):687-698
Taxol inhibits the basal and ACTH-stimulated steroidogenesis of cultured mouse adrenocortical tumor cells, presumably by preventing the arrival of cholesterol in mitochondria. In these cells, taxol polymerizes and rearranges microtubules, disperses SER masses, disrupts the Golgi, and impedes the formation of cholesterol-containing lysosomes. However, taxol's alterations in ultrastructure appear likely to permit both a microtubule-based organelle transport proposed to bring mitochondria of unstimulated cells close to alternate sources of cholesterol--the SER and lipid droplets--and postulated ACTH-caused increases in these encounters. Conceivably, taxol may prevent the transfer of cholesterol from the SER and lipid droplets to mitochondria, once the meetings are achieved. To investigate this possibility, we determined the reversibility of taxol's ultrastructural effects and inhibition of steroidogenesis. Primary cultured adrenal tumor cells were incubated for 4 hr with and without ACTH (10 mU/ml). with taxol (50 micrograms/ml), and with ACTH and taxol 50 simultaneously. Some cultures from each set were washed with fresh medium and re-incubated for 1.5 hr. with and without ACTH. Media taken from cultures at the ends of pre- and post-washout incubations were analyzed for the presence of secreted steroids. Sample cultures were fixed for electron microscopy at the ends of both incubations. Data derived from pre-washout incubations confirmed previous reports of taxol's ultrastructural changes and inhibition of steroidogenesis. When cells recovered from taxol in the absence of ACTH, the inhibition of steroidogenesis was completely reversed. In the presence of ACTH, ex-taxol-treated cells demonstrated a "rounding up' and an increased steroid production that are characteristic responses to the hormone. However, in all cases, there was a persistence of taxol's alterations in organelle numbers and arrangements. Our findings establish that the ultrastructural effects of taxol which we recorded cannot prevent mitochondria of unstimulated and ACTH-stimulated adrenal tumor cells from gaining cholesterol. They strengthened the possibility that in pre-washout incubations, taxol allowed organelle motility to bring mitochondria adjacent to cholesterol-containing SER tubules and lipid droplets, but inhibited steroidogenesis by preventing the cholesterol transfer. Taxol might limit the availability of a protein required for the transfer, an effect not visible in our electron micrographs.  相似文献   

13.
The conversion of cholesterol to cortisol by cultured bovine adrenal cortical cells is stimulated 6-fold by adrenocorticotropin and is limited by the movement of cholesterol to the mitochondria (DiBartolomeis, M.J., and Jefcoate, C.R. (1984) J. Biol. Chem. 259, 10159-10167). Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8)M), for 24 h prior to adrenocorticotropin (ACTH) addition decreased the rate of ACTH-stimulated steroidogenesis but did not affect the basal rate. TCDD was more effective against stimulation at 10(-11) M ACTH (4-fold) than at 10(-7) M ACTH (10%), consistent with an increase in EC50 for ACTH. Stimulation of bovine adrenal cortical cells by cAMP was similarly decreased by TCDD. In both cases the effectiveness of TCDD increased with time of exposure to the stimulant. The transfer of cholesterol to mitochondria in intact cells was quantitated by means of the 2-h accumulation of mitochondrial cholesterol in the presence of aminoglutethimide, an inhibitor of cholesterol side chain cleavage. Although cholesterol accumulated in the presence of ACTH (13 to 28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13 to 8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). In absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h). It is concluded that TCDD pretreatment may increase the presence of a protein(s) that cause mitochondrial cholesterol depletion when the cells are stimulated by ACTH or cAMP. TCDD-enhanced cholesterol efflux from mitochondria diminishes cholesterol side chain cleavage when mitochondrial cholesterol is sufficiently depleted (after 2-4 h).  相似文献   

14.
The influence of adrenocorticotrophin (ACTH) on radiolabeled ascorbic acid (AA) accumulation by adrenocortical cells was examined in primary cultures of collagenase dissociated glands from adult male rats. The cells were ACTH responsive by morphological and steroidogenic criteria. After 5 d in AA-free medium, cells pretreated with 100 mU/ml ACTH for 3 d took up two to three times more AA over a 2 h period than did untreated controls (4.0 to 10.0 nmol versus 1.7 to 3.4 nmol AA/micrograms DNA). In contrast, ACTH administered on Day 6 concurrently with AA inhibited AA accumulation compared to cultures exposed to AA alone. This acute inhibitory effect of ACTH was in the order of 30% in cultures pretreated with ACTH for 3 d but was not significant (7%) without ACTH pretreatment. The results show that ACTH has distinct long term stimulatory and acute inhibitory effects on AA accumulation by adrenocortical cells and suggest that both maximal AA accumulation and the responsiveness to acute inhibition of AA accumulation by ACTH may depend on the maintenance of the differentiated state of the adrenal cortex.  相似文献   

15.
The present study was conducted to evaluate whether the previously demonstrated enhancement in adrenocortical androgen secretion in rabbits chronically treated with ACTH results, in addition to an increased pregnenolone production, from a more efficient conversion of this precursor of steroidogenesis into androgens. To this end, the adrenocortical cells from 14 control and 14 ACTH-treated rabbits (ACTH 1-24,200 micrograms s.c. daily for 12 days) were incubated either in the presence of different concentration of ACTH or with pregnenolone added in amounts from 0.5 to 250 micrograms. The total steroidogenic potency (maximal response to ACTH) was significantly enhanced for cells from ACTH-treated animals, as was the ACTH-induced production of dehydroepiandrosterone (DHEA), DHEA-sulfate, androstenedione and testosterone. In addition the production of these androgens from given amounts of exogenous pregnenolone was also significantly increased. The maximal capacity of adrenocortical cells to convert pregnenolone into androgens averaged (for ACTH-treated vs control group) 130 +/- 34 vs 43 +/- 10 pmol for DHEA, 138 +/- 43 vs 46 +/- 14 pmol for DHEA-sulfate, 99 +/- 31 vs 10 +/- 2 pmol for androstenedione and 8.0 +/- 2.6 vs 2.4 +/- 0.3 pmol for testosterone (P less than 0.001 for all androgens). The addition of ACTH to adrenocortical cells incubated with pregnenolone did not modify the maximal capacity of conversion of pregnenolone into androgens, which was in both experimental groups similar to that documented in the absence of ACTH. Thus, while an acute stimulatory effect of ACTH on adrenocortical steroidogenesis is devoid of any influence on the activity of the post-pregnenolone pathway of androgen synthesis, the chronic exposure of adrenocortical cells to ACTH lead to increased activity of steroidogenic pathway involved in the conversion of pregnenolone into androgens.  相似文献   

16.
Summary The influence of adrenocorticotrophin (ACTH) on radiolabeled ascorbic acid (AA) accumulation by adrenocortical cells was examined in primary cultures of collagenase dissociated glands from adult male rats. The cells were ACTH responsive by morphological and steroidogenic criteria. After 5 d in AA-free medium, cells pretreated with 100 mU/ml ACTH for 3 d took up two to three times more AA over a 2 h period than did untreated controls (4.0 to 10.0 nmol versus 1.7 to 3.4 nmol AA/μg DNA). In contrast, ACTH administered on Day 6 concurrently with AA inhibited AA accumulation compared to cultures exposed to AA alone. This acute inhibitory effect of ACTH was in the order of 30% in cultures pretreated with ACTH for 3 d but was not significant (7%) without ACTH pretreatment. The results show that ACTH has distinct long term stimulatory and acute inhibitory effects on AA accumulation by adrenocortical cells and suggest that both maximal AA accumulation and the responsiveness to acute inhibition of AA accumulation by ACTH may depend on the maintenance of the differentiated state of the adrenal cortex. This work was supported by a grant and research associateship to N. A. from the National Cancer Institute of Canada.  相似文献   

17.
Rat adrenocortical cells were incubated with labeled arachidonate, and the radioactivity in unesterified fatty acids was reduced by washing with 2% albumin solutions. These cells were then incubated for two hours in the absence and presence of 7.1 × 10−10M ACTH. During subsequent incubation of prelabeled cells with ACTH, both the mass and radioactivity of arachidonate in adrenocortical cholesteryl esters was depleted to the same extent (30–32%). The released arachidonate was in part incorporated into phospholipids, and there was also a significant increase in unesterified arachidonic acid. During this period, there was also increased incorporation of arachidonate into labeled prostaglandins. Of this increase, 92% by isotope analysis, and 88% by radioimmunoassay techniques was attributable to prostaglandins of the E pathway. These data demonstrate that prostaglandin E synthesis is specifically increased during ACTH stimulation of rat adrenocortical cells and suggest that a major source of the arachidonate substrate for this synthesis is derived from hormone-dependent hydrolysis of cortical cholesteryl esters.  相似文献   

18.
Low-density lipoprotein (LDL) receptor activity and the concentration of cholesterol were measured in the outer (glomerulosa/fasciculata) and inner (reticularis) zones of the adrenal cortex of the guinea pig to examine the relation between cholesterol content and LDL receptor activity. While the concentration of cholesterol was 2-3-times higher in the outer cortical zone, the maximum high-affinity binding capacity for LDL was essentially the same for the two zones, or slightly higher for the inner zone. Adrenocorticotrophic hormone (ACTH) caused a significant increase in LDL receptor activity only in the outer zone, but led to a reduction in the cholesterol content in both adrenocortical zones. The treatment of animals with 17 alpha-ethinyl-estradiol also resulted in a reduction of cholesterol in both adrenocortical zones, but an increase in LDL receptor number only in the outer zone. The latter effect was partially reversed by the administration of dexamethasone. Aminoglutethimide, which was used in a dose that did not block steroidogenesis but did block the hydrolysis of cholesteryl esters in response to ACTH, did not prevent the ACTH-induced increase in LDL receptor number in the outer zone. Thus, the number of LDL receptors was increased in the zona fasciculata by ACTH in the absence of a reduction in cellular cholesterol content, while the number of LDL receptors in the zona reticularis was not increased by ACTH even in the face of a reduction in cellular cholesterol. Exclusive of the experiments employing aminoglutethimide, when the cellular cholesterol content was plotted against LDL binding activity, an excellent inverse correlation was revealed for the zona fasciculata, but essentially no correlation was noted for the zona reticularis. It is concluded that the outer and inner cortical zones of the guinea pig adrenal are quite distinct in the nature of their LDL receptor activity and regulation: the LDL receptor of the outer zone appears to function in a way similar to what has been reported for the whole adrenal cortex of other species in that receptor number correlates with tissue cholesterol content and is primarily regulated by ACTH; the LDL receptor number of the inner zone, however, does not correlate with tissue cholesterol content and is apparently not regulated by ACTH.  相似文献   

19.
The prolonged stimulatory influence of corticotropin (ACTH) on the adrenocortical steroidogenic response to ACTH was studied in guinea-pig adrenocortical cells harvested from control and ACTH-treated animals (ACTH1-24, 50 micrograms s.c. twice daily on the day preceding the in vitro experiment). The maximal capacity to produce cortisol in response to ACTH (by 10(5) cells and 2 h incubation) was increased from 341.8 +/- 36.3 ng (control group) to 663.3 +/- 37.6 ng for cells obtained from guinea-pigs treated in vivo with ACTH. In the presence of trilostane, added to the cells in order to block the conversion of pregnenolone to cortisol, the net maximal output of pregnenolone and 17-hydroxypregnenolone in response to ACTH was significantly increased in adrenocortical cells from ACTH-treated animals (449.5 +/- 35.8 ng pregnenolone and 85.7 +/- 10.5 ng 17-hydroxypregnenolone vs 269.1 +/- 36.3 ng pregnenolone and 43.7 +/- 8.51 ng 17-hydroxypregnenolone for cells from control guinea-pigs). It appeared therefore that the total production of pregnenolone (as estimated by the sum of pregnenolone and 17-hydroxypregnenolone produced by the cells incubated with trilostane) nearly reached the level of the maximal production of cortisol in response to ACTH and was also significantly enhanced for cells from ACTH-treated animals (532.2 +/- 38.4 ng vs 312.8 +/- 40.0 ng for cells from control group). By contrast, no effect was documented on 17 alpha-hydroxylase activity since 17 alpha-hydroxylation index was similar for both types of adrenocortical cells (16.3 +/- 2.05% for ACTH-treated animals and 14.2 +/- 2.83% for control group). It was concluded therefore that the prolonged stimulatory influence of ACTH on pregnenolone production is the main mechanism of the enhancement of cortisol synthesis by guinea-pig adrenocortical cells previously stimulated by ACTH.  相似文献   

20.
In order to corroborate the regulatory role of Ca++-calmodulin system in the steroidogenic response to adrenocorticotropic hormone (ACTH), the effects of calmodulin inhibitors (chlorpromazine, trifluoperazine, and W-7) on cortisol production and cellular cholesterol ester hydrolysis induced by ACTH in bovine adrenocortical cells were examined. Three calmodulin inhibitors diminished not only the cholesterol ester hydrolysis and cortisol production induced by ACTH in the presence of Ca++, but also inhibited the Ca++-induced hydrolysis and cortisol production in the absence of ACTH. Neither cortisol production in crude mitochondrial fraction nor the ACTH-induced Ca++-influx was affected by chlorpromazine. These results indicate that Ca++f-calmodulin system plays a significant regulatory role in the supply of free cholesterol to the adrenal mitochondria in the steroidogenic response to ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号