首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When invasive woody plants become dominant, they present an extreme challenge for restoration of native plant communities. Invasive Morella faya (fire tree) forms extensive, nearly monospecific stands in wet and mesic forests on the Island of Hawai’i. We used logging, girdling, and selective girdling over time (incremental girdling) to kill stands of M. faya at different rates, with the objective of identifying a method that best promotes native forest re-establishment. We hypothesized that rapid canopy opening by logging would lead to establishment of fast-growing, non-native invaders, but that slower death of M. faya by girdling or incremental girdling would increase the establishment by native plants adapted to partial shade conditions. After applying the M. faya treatments, seed banks, seed rain, and plant recruitment were monitored over 3 years. Different plant communities developed in response to the treatments. Increased light and nitrogen availability in the logged treatment were associated with invasion by non-native species. Native species, including the dominant native forest tree, (Metrosideros polymorpha) and tree fern (Cibotium glaucum), established most frequently in the girdle and incremental girdle treatments, but short-lived non-native species were more abundant than native species. A diverse native forest is unlikely to develop following any of the treatments due to seed limitation for many native species, but girdling and incremental girdling promoted natural establishment of major components of native Hawaiian forest. Girdling may be an effective general strategy for reestablishing native vegetation in areas dominated by woody plant invaders.  相似文献   

2.
The mechanisms by which invasive species affect native communities are not well resolved. For example, invasive plants may influence other species through competition, altered ecosystem processes, or other pathways. We investigated one potential mechanism by which invasive plants may harm native species, allelopathy. Specifically, we explored whether native tree species respond differently to potential allelopathic effects of two invasive plant species. We assessed the separate effects of Lolium arundinaceam (tall fescue) and Elaeagnus umbellata (autumn olive) on three common successional tree species: Acer saccharinum (silver maple), Populus deltoides (eastern cottonwood), and Platanus occidentalis (sycamore). Tall fescue and autumn olive are widely planted and highly invasive or persistent throughout North America where they often grow in forest edges, old fields, and other sites colonized by pioneering tree species. In an exploratory greenhouse experiment, we applied aqueous extracts derived from soil, leaf litter, or live leaves to native trees. We compared these treatments to a sterile water control and also to minced leaves leached in water, a common, but potentially less realistic method of testing for allelopathy. For all tree species, minced leaves from tall fescue reduced the probability that seedlings emerged, and minced leaves of autumn olive reduced the number of days to emergence. During other demographic stages, the three native tree species diverged in their responses to the invasive plants. Platanus occidentalis exhibited the widest range of responses, with reduced root biomass due to minced tissue from both invasive species, reduced days to emergence and marginally reduced survival from minced tall fescue, and reduced leaf biomass from tall fescue leaf litter. Populus deltoides appeared insensitive to most extracts, although survival was marginally increased with application of minced or fresh leaf extracts from autumn olive. In addition, minced tall fescue shortened the time to seedling emergence for Acer saccharinum, potentially a positive effect. Overall, results suggest that allelopathy may be one mechanism underlying the negative impacts of tall fescue and autumn olive on other plant species, but that effects can depend strongly upon the source of allelochemicals and the tree species examined.  相似文献   

3.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

4.
Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora.  相似文献   

5.
In subtropical Australia, many native and invasive plant species rely on a shared suite of frugivores, largely birds, for seed dispersal. Many native plants fruit during summer in this region, whereas most invasive plants fruit during winter, thus providing the opportunity for contagious dispersal of seeds beneath synchronously fruiting species. We sampled invasive and native seed rain beneath the canopy of a native summer‐fruiting tree Guioa semiglauca and an invasive winter‐fruiting tree Cinnamomum camphora, in three study sites over the course of a year. In July, during peak fruiting season for C. camphora and other invasive species, seed rain of invasive species was higher beneath C. camphora than G. semiglauca. This was partly due to the invasive tree Ligustrum lucidum, whose seed rain was three times higher beneath C. camphora than beneath the native tree. In February, seed rain of native species was more abundant beneath the canopy of G. semiglauca than beneath C. camphora, despite the fact that C. camphora was also fruiting at this time. This was probably due to the larger fruit crop produced by G. semiglauca at this time of year. Our study provides evidence that the presence of invasive bird‐dispersed plants may facilitate contagious seed dispersal of other invaders, and likewise native species may facilitate seed spread of other native plants.  相似文献   

6.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

7.
Question: What factors limit woody plant recruitment in a mosaic landscape where former agricultural lands are dominated by the invasive tree Ligustrum lucidum (Oleaceae)? Location: Subtropical northwestern Argentina. Methods: In secondary forest patches, we measured (1) tree, shrub and liana abundance in different size classes; (2) seed rain of Ligustrum and two native trees and (3) topographic, soil and light variables. We used spatial autoregressive models to test for effects of Ligustrum dominance and environment on native plant abundance in each size class. We used multiple regression on resemblance matrices to quantify the relative importance of spatial (e.g. dispersal) and environmental effects on native species composition. Results: Native tree abundance in the smallest size class was unrelated to Ligustrum canopy dominance, while native tree abundance in larger size classes and native liana abundance were negatively correlated with Ligustrum dominance. Native species composition was both environmentally and spatially structured, suggesting that some species are dispersal limited. Seed rain was spatially correlated with conspecific basal area for one of two native species, but not for Ligustrum. Conclusions: Native tree recruitment appears to be limited primarily by sapling mortality in patches dominated by the invasive Ligustrum. Ligustrum does not appear to be dispersal limited in our study area and is likely to continue spreading. Invaded patches may persist for hundreds of years.  相似文献   

8.
The role of the Orii’s flying-fox (Pteropus dasymallus inopinatus) as a pollinator and a seed disperser on Okinawa-jima Island was investigated by direct observations and radio-tracking from October 2001 until January 2006. We found that Orii’s flying-fox potentially pollinated seven native plant species. Its feeding behavior and plant morphological traits suggested that this species is an important pollinator of Schima wallichii liukiuensis and Mucuna macrocarpa. The flying-fox also dispersed the seeds of 20 native plant species. The seeds of all plants eaten by the flying-fox were usually dropped beneath the parent tree, although large fruits of four plant species were occasionally brought to the feeding roosts in the mouth, with the maximum dispersal distance—for Terminalia catappa—estimated to be 126 m. Small seeds of 11 species (mostly Ficus species) were dispersed around other trees, during the subsequent feeding session, through the digestive tracts, with the mean dispersal distance for ingested seeds estimated at 150 ± 230.3 m (±SD); the maximum dispersal distance was 1833 m. A comparison of the seed dispersal of available fruits according to the size of flying-foxes and other frugivores suggested that the seed dispersal of eight plant species producing large fruits mostly depended on Orii’s flying-fox. On Okinawa-jima Island, the Orii’s flying-fox plays an important role as a pollinator of two native plants and as a long-distance seed disperser of Ficus species, and it functions as a limited agent of seed dispersal for plants producing large fruits on Okinawa-jima Island.  相似文献   

9.
Invasion of habitats by exotic shrubs is often associated with a decrease in the abundance of native species, particularly trees. This is typically interpreted as evidence for direct resource competition between the invader and native species. However, this may also reflect indirect impacts of the exotic shrubs through harboring high densities of seed predators––known as apparent competition. Here I present data from separate seed predation experiments conducted with two shrub species exotic to North America; Rosa multiflora, an invader of abandoned agricultural land, and Lonicera maackii, an invader of disturbed or secondary forest habitats. Both experiments showed significantly greater risks of seed predation for tree seeds located under shrub canopies when compared to open microhabitats within the same site. These results indicate the potential importance of indirect impacts of exotic species invasions on native biota in addition to the direct impacts that are typically the focus of research.  相似文献   

10.
Hornbills (Bucerotidae) are widely regarded as important seed dispersers in tropical forests in Africa and Asia. We investigated how the roosting behavior of wreathed hornbills (Aceros undulatus) influences seed deposition and seedling survival at a roost site in a moist evergreen forest of Khao Yai National Park, Thailand. Fallen fruits and seeds were collected in traps that were placed around a roosting site for 14 months, and seedlings were monitored in adjacent quadrats for 3 years. Seedfall and seedlings of species represented in the hornbill diet occurred at significantly higher densities in the traps and quadrats located beneath the crown of the roosting tree than in those located beyond the crown. With the exception of Cinnamomum subavenium, the seeds and seedlings of most diet species rarely survived beyond the first year. The quality of hornbill dispersal to this roosting site may be poor due to the highly concentrated seedfall, which results in high seed and seedling mortality. However, the number of seeds deposited by each hornbill each day at roosting sites is relatively low. Wreathed hornbills are primarily scatter dispersers during the day and probably serve as agents of seed dispersal in the moist evergreen forest of Khao Yai.  相似文献   

11.
Forest fragmentation facilitates the invasion of exotic species. This threat may be especially severe if forest fragments are surrounded by plantations of exotic species like Pinus radiata, an aggressive colonizer and shade-intolerant tree that has invaded successfully several native ecosystems of the southern hemisphere. In this study, we experimentally tested if the conditions of a successful seedling establishment P. radiata are fulfilled at the Coastal Maulino forest, an endemic fragmented forest of central Chile. Results demonstrated that seeds are dispersed into the native forests, however seedling establishment occurs only at the edges. We conclude that this exotic species is not invading native forests up to date. However, we suggest to conduct evaluations of seed rain and seedling establishment in the long term, in order to monitor the fate of this exotic species in fragmented native forest of Central Chile.  相似文献   

12.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

13.
Patterns of seed dispersal and the effects of mulching upon Celtis sinensis Pers. seedling establishment were investigated following the removal of this tree weed from a riparian forest community. At the commencement of the study there was virtually no representation of C. sinensis in the soil seed bank. However, subsequent rates of seed immigration were high since mature individuals of C. sinensis remained on the boundary of the site. Fruit bats (Pteropus spp.) were the principal dispersal vectors. Seed rain density of C. sinensis was best fitted by an inverse power distribution, with seed densities in excess of 20 m−2 detected at 70 m from the seed source. Extrapolation from this relationship suggested that a site would have to be more than 350 m from a seed source to reduce the C. sinensis seed rain to less than 1 m−2. More than 98% of the seed rain occurred below the canopies of the native tree species that remained following the removal of C. sinensis. For these trees, subarboreal C. sinensis seed distributions were not homogeneous, with peak seed densities occurring at different distances from tree trunks in each of the two years that seed distributions were assessed. Mulching with compacted sugar cane trash, corresponding to litter loadings of 6–12 kg m−2, was imposed early in the study, some weeks before the C. sinensis seed rain commenced. These treatments had no measurable effect upon C. sinensis germination, but substantially reduced seedling survival and had variable effects upon the early growth of seedlings. The potential roles of seed limitation vs establishment limitation are discussed in relation to the management of animal-dispersed invasive species. It is argued that an understanding of the likely levels and patterns of invasion is essential for the formulation of management strategies that can effectively reduce the invasion and impacts of these plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
灵长类是森林生态系统中植物种子的主要传播者,有助于森林植被的更新,然而受研究方法的限制,灵长类种子传播潜力常被低估。为全面评估温带灵长类动物的种子传播潜力,采用直接观察法和粪便分析法评估珍稀濒危灵长类动物黑白仰鼻猴的种子传播潜力。于2018年11月—2019年10月采用直接观察法(瞬时扫描取样法)收集云岭省级自然保护区拉沙山黑白仰鼻猴的活动时间分配数据,获取每月取食果实的比例;同时每月收集黑白仰鼻猴的粪便,采用粪便分析法分拣猴粪中残留的植物种子,统计有完整种子残留的月份和粪便比例,应用这两种方法评估黑白仰鼻猴种子传播潜力及其差异。结果表明:直接观察法收集到黑白仰鼻猴取食果实的月份数为6个月(7—12月),月均取食果实的比例为(15.31±20.15)%,共取食13种果实;而粪便分析法发现黑白仰鼻猴粪粒内全年都有完整种子残留,粪便中月均完整种子残留比例(35.19±35.43)%,其中9月至第二年1月粪便中种子残留比例都大于50%,共取食18种果实;综合两种方法发现云南拉沙山黑白仰鼻猴共取食20种植物果实,具有较高的种子传播潜力。直接观察法可确定黑白仰鼻猴取食果实的物种数,而粪便分析法能...  相似文献   

15.
Evidence for secondary seed dispersal by rodents in Panama   总被引:9,自引:0,他引:9  
Summary The data presented show thatVirola nobilis (Myristicaceae), a bird/mammal-dispersed tree species in Panama, may also be dispersed by a terrestrial rodent, the agouti (Dasyprocta punctata). Using a thread-marking method, we observed that agoutis scatterhoardedV. nobilis seeds that they found both singly or in clumps. Seed removal and seed burial rates were strongly affected by features of forest habitats, such asV. nobilis tree richness (rich vs poor) and/or forest age (old vs young), but not by seed dispersal treatment (scattered vs clumped). Predation (mostly post-dispersal) of unburied seeds by weevils was independent of habitat and dispersal treatment. Seeds artificially buried in aVirola-rich area were more likely to escape predation and become established than unburied seeds under natural conditions. The food reward for agoutis is in the germinating seedlings. The seed dispersal syndrome ofV. nobilis involves long- and short-distance dispersers which both appear important for tree recruitment.  相似文献   

16.
Miller KE  Gorchov DL 《Oecologia》2004,139(3):359-375
Effects of invasive plant species on native plant species are frequently assumed or inferred from comparisons, but rarely quantified experimentally. Such quantification is important to assessing risks and impacts of invasives. We quantified the effects of Lonicera maackii, an exotic shrub invasive in many eastern North American forests, on survival, growth, and reproduction of three perennial herbs: Allium burdickii, Thalictrum thalictroides , and Viola pubescens. We predicted that the spring ephemeral, A. burdickii , would be most impacted, due to early leaf expansion of L. maackii. Field experiments were carried out in two deciduous forest stands, one (Greggs Woodlot, GW) disturbed and the other (Western Woods, WW) relatively undisturbed. In each stand, individual herbs were transplanted into a blocked design of 60 plots where L. maackii was present, absent, or removed, and monitored for 5 growing seasons. Lonicera maackii did not affect survival of transplants, but reduced growth and final size of individuals of all three species. For two of the species, A. burdickii and V. pubescens, L. maackii reduced the proportion of live plants flowering in both stands, and reduced the seed or fruit number per flowering individual in GW. For T. thalictroides the proportion flowering was not affected, but seed number per flowering plant was reduced by L. maackii in both stands. For all three species, cumulative seed production over the course of the study was reduced by L. maackii. Overall, effects on the spring ephemeral, A. burdickii, were similar to effects on the other herbs. Because mortality of these established individuals was not affected, short-term studies might conclude forest herbs are unaffected by invasive shrubs. However, the growth and reproduction impacts documented here suggest that populations are impacted in the long-term.  相似文献   

17.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

18.
Pollen dispersal from exotic eucalypt plantations   总被引:3,自引:1,他引:2  
The introgression of genes from exotic species or populations into gene pools of native species is a widespread concern in agricultural systems. This is also an issue of increasing importance in forest systems as there has been a dramatic expansion of tree plantations, which have now reached 180 million ha globally. This has recently occurred in Australia with eucalypts. To help assess the risk of genetic pollution, we assess the pattern of realised pollen dispersal from exotic Eucalyptus nitens plantations into native E. ovata forest in Tasmania. We assessed the frequency of F1 hybrids in open-pollinated seed collected from native E. ovata trees located at varying distance from three exotic E. nitens plantations in Tasmania. Over 119,000 seedlings were screened for morphological markers diagnostic of each species and the F1 hybrid. F1 hybridisation averaged 7.2% within 100 m of the exotic E. nitens, with one native tree reaching 56%, but diminished to 0.7% by 200–300 m and continued at this low level to the limits of the sampling at 1.6 km. The decay in the percentage of interspecific F1 hybridisation with distance followed a power function with a negative exponent (%F1 = 91.435distance–0.789; R2=0.84). Eucalyptus nitens is exclusively pollinated by small insects (smaller than honeybees), which the study shows can disperse pollen over 1.6 km. However, the restriction of most exotic F1 hybridisation to within 200 m of exotic plantations presents clear opportunities to manage the genetic impacts of plantations on native forests.  相似文献   

19.
Since most studies on Prunus serotina in Western Europe focused on heavily invaded areas, we wondered whether P. serotina also acts as an aggressive invader in areas with a low propagule pressure. Based on long-term data for the Liedekerke forest reserve, we found that connectivity to seed sources and light availability were the major drivers of P. serotina presence: long-distance dispersal events and ‘windows of opportunity’ seem to direct P. serotina colonization. In the studied forest, P. serotina could not be considered an aggressive invader since its spread slowed down rather quickly and did not hamper the establishment of native tree species. Furthermore, understory P. serotina showed low growth and seed production, while the high Rubus cover hampered germination and establishment. Nonetheless, calamities opening up the canopy layer in the few areas with high P. serotina sapling density might alter the course of the invasion process.  相似文献   

20.
The diverse ecological roles played by different rodent species mean that the loss of some species and superabundance of others could potentially influence a wide range of ecological processes. Hong Kong (22° N, 114° E), with seven million people in a land area of 1100 km2, could be considered a `worst case scenario' for the survival of mammalian diversity. Existing information on rodents in Hong Kong was compiled from previous published and unpublished studies, and additional trapping was conducted at 17 non-urban sites. The rodent fauna of modern Hong Kong consists of eight species of rats and mice (Bandicota indica, Mus caroli, M. musculus, Niviventer fulvescens, Rattus norvegicus, R. rattus, R. tanezumi, R. sikkimensis: Muridae), one porcupine (Hystrix brachyura: Hystricidae), and one recently introduced tree squirrel (Callosciurus erythraeus: Sciuridae). Six of the murids are urban or agricultural commensals, so only the porcupine and two murids, N. fulvescens and R. sikkimensis, are likely survivors of Hong Kong's pre-deforestation native rodent fauna. The two murids co-dominate in forest and shrubland, but can also move through grassland, which has probably enabled their survival through repeated cycles of fragmentation and regrowth. Additional forest rodents that may have inhabited Hong Kong in the past are tentatively identified from information on their recent distributions in the region. One possible ecological consequence of Hong Kong's depleted rodent fauna is a shift in the balance between seed predation and seed dispersal, in favor of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号