共查询到20条相似文献,搜索用时 15 毫秒
1.
FLOWERING LOCUS T (FT) like genes are crucial regulators (both positive and negative) of flowering in angiosperms. We identified two FT homologs in Chenopodium rubrum, a short-day species used as a model plant for the studies of photoperiodic flower induction. We found that CrFTL1 gene was highly inducible by a 12-h dark period, which in turn induced flowering. On the other hand, photoperiodic treatments
that did not induce flowering (short dark periods, or a permissive darkness interrupted by a night break) caused only a slight
increase in CrFTL1 mRNA level. We demonstrated diurnal oscillation of CrFTL1 expression with peaks in the middle of a light period. The oscillation persisted under constant darkness. Unlike FT homologs in rice and Pharbitis, the CrFTL1 expression under constant darkness was very low. The CrFTL2 gene showed constitutive expression. We suggest that the CrFTL1 gene may play a role as a floral regulator, but the function of CrFTL2 remains unknown. 相似文献
2.
Kexue Li Youning Wang Chunyu Han Wensheng Zhang Huizhen Jia Xia Li 《Plant Growth Regulation》2007,53(3):195-206
Flowering timing is very important for the reproductive success of higher plants. However, effects of salt on plant flowering
and the underlying molecular mechanisms are largely unknown. Here, we show that salt stress delays flowering in Arabidopsis in a dose-dependent manner. Mild salt stress (≤50 mM NaCl) promoted and prolonged the vegetative growth, whereas high salinity
(≥100 mM NaCl) largely delayed or inhibited the transition from vegetative growth to reproductive development. The gibberellin
(GA)-pathway plays an important role in this phenotype, and application of exogenous GA could restore late flowering induced
by salt. In addition, the CONSTANS (CO)/FLOWERING LOCUS T (FT) module may also play a critical role in mediating the effects of salt on flowering. The mRNA abundance of CO was significantly reduced by salt stress in a dose-dependent manner. The constans (co-2) mutants did not respond to moderate salt stress, whereas over-expressing CO manifested no delay in flowering time in response to salinity. Expression of FT, SOC1 and LFY in the downstream of the pathways was also reduced by salt according to dose. Moreover, salt-sensitive mutant salt overly sensitive3 (sos3) exhibited greater sensitivity in flowering, further suggesting that ion disequilibrium mediates salt-induced late flowering.
Kexue Li and Youning Wang contributed equally to this report. 相似文献
3.
To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of
external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known. In this paper, we describe the regulation and interactions of a novel member of
the family, COL5. The expression of COL5 is under circadian and diurnal regulation, but COL5 itself does not appear to affect circadian rhythms. COL5, like CO, is regulated by GIGANTEA. Furthermore, COL5 is expressed in the vascular tissue. Using COL5 over-expressing lines we show that, under short days, constitutive expression of COL5 affects flowering time and the expression of the floral integrator genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO 1. Constitutive expression of COL5 partially suppresses the late flowering phenotype of the co-mutant plants. However, plants with loss of COL5 function do not show altered flowering. Taken together, our results suggest that COL5 has COL activity, but may either not
have a role in regulating flowering in wild-type plants or may act redundantly with other flowering regulators.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
The FLOWERING LOCUS C (FLC) gene controls the transition of arabidopsis plants to flowering following cold induction (vernalization). Time to flowering in annual and biennial species of Brassicaceae supposedly depends on the number of FLC copies. We analyzed DNA restriction fragment length polymorphism in six Brassica species with diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) genomes using for a hybridization probe an FLC homolog previously cloned in our laboratory from B. juncea. The characteristic variations in the patterns of restriction fragments corresponded to the genomic composition of Brassica species and, in some cases, correlated with the timing of floral transition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 399–405.Original Russian Text Copyright © 2005 by Martynov, Khavkin. 相似文献
5.
6.
7.
8.
9.
10.
11.
Matthew A. Jones 《Journal of Plant Biology》2009,52(3):202-209
The rising and setting of the sun marks a transition between starkly contrasting environmental conditions for vegetative life.
Given these differing diurnal and nocturnal environmental factors and the inherent regularity of the transition between the
two, it is perhaps unsurprising that plants have developed an internal timing mechanism (known as a circadian clock) to allow
modulation of gene expression and metabolism in response to external cues. Entrainment of the circadian clock, primarily via
the detection of changes in light and temperature, maintains synchronization between the surrounding environment and the endogenous
clock mechanism. In this review, recent advances in our understanding of the molecular workings of the plant circadian clock
are discussed as are the input pathways necessary for entrainment of the clock machinery. 相似文献
12.
13.
Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific
changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the
characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+ in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens.
This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering
Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE). 相似文献
14.
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however,
the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to
ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt
tolerance. 相似文献
15.
Summary An EMS (ethyl methanesulfonate) mutagenesis effector screen performed with the STM:GUS marker line in Arabidopsis thaliana identified a loss-of-function allele of the TORNADO2 gene. The histological and genetic analyses described here implicate TRN2 in SAM function, where the peripheral zone in trn2 mutants is enlarged relative to the central stem cell zone. The trn2 mutant allele partially rescues the phenotype of shoot meristemless mutants but behaves additively to wuschel and clavata3 alleles during the vegetative phase and in the outer floral whorls. The development of carpels in trn2
wus-1 double mutant flowers indicates that pluripotent cells persist in floral meristems in the absence of TRN2 function and can be recruited for carpel anlagen. The data implicate a membrane-bound plant tetraspanin protein in cellular
decisions in the peripheral zone of the SAM. 相似文献
16.
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors. 相似文献
17.
18.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region
of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds.
Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression.
Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both
EGFP intensity and fluorometric GUS activity, respectively. 相似文献
19.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny. 相似文献