首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The buoyant density characteristics of infectious particles of herpes simplex virus types 1 and 2 were studied by centrifugation in sucrose and cesium chloride density gradients with a high resolution and satisfactory infectivity recovery. It was shown that two populations of infectious virions differing in buoyant density coexisted, the difference being slight but definite. The ratio of heavy (H) to light (L) viral particles varied depending upon the solute used, the strains of virus, and the cell origin. Circumstances favoring degradation of viral infectivity tended to increase the H portion. Incubation at 37 degrees C largely converted L to H, and heating at 45 degrees C converted all virions to H without infectivity. The L to H conversion was irreversible, and no populations intermediate between L and H were clearly observed. Inactivation by UV light irradiation did not affect the density pattern. That H was not an artefact due to penetration of solutes, osmotic pressure, viral aggregation, or loss of the envelope was shown experimentally. A difference in the outer shape of particles between negatively stained L and H populations was demonstrated by electron microscopy. Both cell-released and cell-bound herpes simplex virus particles gave essentially the same result with respect to the above characteristics. The effect of limiting dilutions of antiserum was similar to that of mild thermal treatment, in that denser virions increased parallel to a decrease in less dense virions. Sensitization with early immunoglobulin G, composed mainly of complement-requiring neutralizing antibody, caused the density transition, and subsequent addition of complement resulted in a further increase in the buoyant density of the sensitized virions. The DNA in virus particles neutralized with immunoglobulin G plus complement remained resistant to DNase treatment. Possible implications of the phenomena are discussed.  相似文献   

2.
Formation of Venecuelan equine encephalomyelitis virus (VEE) aggregates induced by UV-light has been studied. The high doses of UV-irradiation induced the protein-protein cross-links resulting in formation of fast sedimenting viral structures. The latter structures are supposed to be presented by the aggregates of several virions linked by the UV-light induced RNA-protein and protein-protein covalent bonds. The lesions in the fine structure of virion envelope was registered by the electron microscopy technique.  相似文献   

3.
The glycoproteins associated with the membranes of cytomegalovirions and dense bodies were characterized by their relative mobility, percentage of glucosamine incorporation, and molecular weight. Eight glycopolypeptides were repeatedly detectable. Three glycopolypeptides of higher molecular weight with low levels of glucosamine incorporation were occasionally detectable. These latter glycopolypeptides may be precursors or aggregates of the glycopolypeptides with lower molecular weights. The glycoproteins associated with the membranes were on the surface, as determined by iodination with 125I of virions and dense bodies partially purified in gradients of D-sorbitol. Velocity centrifugation in linear gradients of D-sorbitol was used to obtain concentrated and partially purified preparations of infectious cytomegalovirus. Viral infectivity and the membranes of cytomegalovirions and dense bodies were stable in gradients of sorbitol, but cellular contaminants were not completely removed. Additional centrifugation in CsCl separated both cellular contaminants and viral nucleocapsids from virions and dense bodies. Many dense bodies, which are considered to be aberrant forms of cytomegalovirus, had the same size, sedimentation properties, and density as virions. Consequently, they were not separable from virions by various centrifugation techniques. Electron microscopy demonstrated that purified virions and dense bodies were qualitatively free of extraneous material and that each dense body was bounded by a membrane, as evidenced by its double-tract appearance. Antisera to a preparation of purified virions and dense bodies, or to their glycoproteins, contained antibodies that neutralized viral infectivity and reacted with antigens in cells infected with cytomegalovirus. However, these same antisera did not contain antibodies that reacted with uninfected cells. The glycoproteins associated with the membranes of cytomegalovirions and dense bodies are considered to be specified by the cytomegalovirus genome.  相似文献   

4.
5.
In the infectious entry pathway of influenza virus, the low pH of the endosomal compartment induces an irreversible conformational change in influenza virus hemagglutinin, leading to fusion of viral and endosomal membranes. In the current report, we characterized the low-pH-induced activation of hemagglutinin of influenza strain X31 by studying its interaction with a lipid monolayer. The surface activities of virions, of isolated hemagglutinins and its proteolytic fragments, and of a synthetic peptide mimicking the amino terminus of subunit 2 of hemagglutinin are compared. The data indicate that the surface activity of both virions and isolated hemagglutinin develop as a result of the low-pH-induced conformational change in hemagglutinin. The surface activity of isolated hemagglutinin is mainly caused by penetration into the lipid monolayer of protein domains other than the amino terminus of subunit 2 of hemagglutinin; domains in subunit 1 may be involved. The surface activity of virions appears to be a secondary effect of the conformational change and is explained by assuming a net transfer of viral lipids to the lipid monolayer.  相似文献   

6.
The plaque-assay technique was used as a tool to determine the optimal conditions for adsorption of polyoma virions to host cells. Using these optimal conditions of adsorption, an electron microscopy study of the early events of infection was performed. By electron microscopy and autoradiography, it was demonstrated that both the viral coat proteins and DNA arrive simultaneously in the nucleus as early as 15 min postinfection. When horseradish peroxidase-labeled virions, pseudovirions, and capsids were used to infect cells, only the particles with nucleic acid or a factor(s) associated with the nucleic acid, i.e., histones, appeared to enter the nucleus. Moreover, when virions were used to infect either permissive or nonpermissive cells, identical early events of viral infection, i.e., adsorption, penetration, and nuclear transport, were observed, suggesting that these early events of infection are a property of the virion and not the host cell.  相似文献   

7.
Three adenovirus type 2-specified immunogens elicited neutralizing antibodies when injected into rabbits; these were the fiber, the hexon, and the penton base. Adenovirus type 2 virions, neutralized by antihexon- or anti-penton base antisera, attached to HeLa cells to the same extent as untreated control virus, and after attachment, neutralized viruses also became sensitive to DNase treatment. A fraction of 75 to 80% of the attached antibody-treated virions penetrated the plasma membrane, which should be compared with an 84 to 88% penetration level in the control series. A majority of the antihexon-neutralized virions was found in intracellular vesicles, as revealed with an electron microscope, but in the case of anti-penton base neutralization, a maximum of 50% of the virions was retained within vesicles, and ca. 30% was free in the cytoplasmic compartment. A value greater than 45% was never obtained for neutralization with a monospecific anti-penton base antiserum, which could imply the existence of alternative pathways for virus penetration into HeLa cells--one of these being sensitive to treatment with anti-penton base antiserum. Antisera containing antifiber specificities efficiently aggregated virions, and the aggregation data mirrored the degree of neutralization. Antifiber-neutralized virions attached to cells to a three- to five times greater extent than untreated control virus, but the former virions had a reduced ability to become sensitive to DNase treatment. Around 15% of the attached antifiber-treated virions was found as large aggregates inside multivesicular bodies or lysosomes.  相似文献   

8.
The purpose of this study was to identify the herpes simplex virus glycoprotein(s) that mediates the adsorption of virions to cells. Because heparan sulfate moieties of cell surface proteoglycans serve as the receptors for herpes simplex virus adsorption, we tested whether any of the viral glycoproteins could bind to heparin-Sepharose in affinity chromatography experiments. Two glycoproteins, gB and gC, bound to heparin-Sepharose and could be eluted with soluble heparin. In order to determine whether virions devoid of gC or gB were impaired for adsorption, we quantitated the binding of wild-type and mutant virions to cells. We found that at equivalent input concentrations of purified virions, significantly fewer gC-negative virions bound to cells than did wild-type or gB-negative virions. In addition, the gC-negative virions that bound to cells showed a significant delay in penetration compared with wild-type virus. The impairments in adsorption and penetration of the gC-negative virions can account for their reduced PFU/particle ratios, which were found to be about 5 to 10% that of wild-type virions, depending on the host cell. Although gC is dispensable for replication of herpes simplex virus in cell culture, it clearly facilitates virion adsorption and enhances infectivity by about a factor of 10.  相似文献   

9.
beta-Amyloid peptide (A beta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated A beta is toxic to neurons, but the mechanism of toxicity is uncertain. One hypothesis is that interactions between A beta aggregates and cell membranes mediate A beta toxicity. Previously, we described a positive correlation between the A beta aggregation state and surface hydrophobicity, and the ability of the peptide to decrease fluidity in the center of the membrane bilayer [Kremer, J. J., et al. (2000) Biochemistry 39, 10309--10318]. In this work, we report that A beta aggregates increased the steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the hydrophobic center of the membrane in phospholipids with anionic, cationic, and zwitterionic headgroups, suggesting that specific charge--charge interactions are not required for A beta--membrane interactions. A beta did not affect the fluorescence lifetime of DPH, indicating that the increase in anisotropy is due to increased ordering of the phospholipid acyl chains rather than changes in water penetration into the bilayer interior. A beta aggregates affected membrane fluidity above, but not below, the lipid phase-transition temperature and did not alter the temperature or enthalpy of the phospholipid phase transition. A beta induced little to no change in membrane structure or water penetration near the bilayer surface. Overall, these results suggest that exposed hydrophobic patches on the A beta aggregates interact with the hydrophobic core of the lipid bilayer, leading to a reduction in membrane fluidity. Decreases in membrane fluidity could hamper functioning of cell surface receptors and ion channel proteins; such decreases have been associated with cellular toxicity.  相似文献   

10.
Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events.  相似文献   

11.
Nine neurodegenerative diseases, such as Huntington, are caused by a polyglutamine (poly(Q)) expansion in otherwise unrelated proteins. Although poly(Q) expansion causes aggregation of the affected proteins, the protein context might determine the selective neuronal vulnerability found in each disease. Here we have report that, although expression of Huntingtin derivatives with a pathological poly(Q) expansion are innocuous in yeast, deletion of the flanking proline-rich region alters the shape and number of poly(Q) inclusions and unmasks toxic properties. Strikingly, deletion of Hsp104 increases the size of inclusions formed by expanded poly(Q) lacking the proline-rich region and abolishes toxicity. Overexpression of the chaperones Hsp104 or Hsp70 rescues growth defects in affected cells without resolving inclusions. However, aggregates formed by nontoxic Huntingtin derivatives or by toxic derivatives cured by chaperones are physically distinct from aggregates formed by toxic proteins. This study identifies the proline-rich region in Huntingtin as a profound cis-acting modulator of expanded poly(Q) toxicity and distinguishes between aggregates of toxic or non-toxic proteins.  相似文献   

12.
Prions are infectious, aggregated proteins that cause diseases in mammals but are not normally toxic in fungi. Excess Sup35p, an essential yeast protein that can exist as the [ PSI +] prion, inhibits growth of [ PSI +] but not [ psi -] cells. This toxicity is rescued by expressing the Sup35Cp domain of Sup35p, which is sufficient for cell viability but not prion propagation. We now show that rescue requires Sup35Cp levels to be proportional to Sup35p overexpression. Overexpression of Sup35p appeared to cause pre-existing [ PSI +] aggregates to coalesce into larger aggregates, but these were not toxic per se because they formed even when Sup35Cp rescued growth. Overexpression of Sup45p, but not other tested essential Sup35p binding partners, caused rescue. Sup45–GFPp formed puncta that colocalized with large [ PSI +] Sup35-RFPp aggregates in cells overexpressing Sup35p, and the frequency of the Sup45–GFPp puncta was reduced by rescuing levels of Sup35Cp. In contrast, [ PSI +] toxicity caused by a high excess of the Sup35p prion domain (Sup35NMp) was rescued by a single copy of Sup35Cp, was not rescued by Sup45p overexpression and was not associated with the appearance of Sup45–GFPp puncta. This suggests [ PSI +] toxicity caused by excess Sup35p verses Sup35NMp is, respectively, through sequestration/inactivation of Sup45p verses Sup35p.  相似文献   

13.
Intracellular Uncoating of Type 5 Adenovirus Deoxyribonucleic Acid   总被引:60,自引:44,他引:16       下载免费PDF全文
Highly purified, (32)P-labeled type 5 adenovirus was employed to study "uncoating" of viral deoxyribonucleic acid (DNA)-defined as the development of sensitivity to deoxyribonuclease. Viral infectivity and radioactivity adsorbed to KB cells at the same rate, and significant amounts of (32)P did not elute from cells throughout the eclipse period. Kinetic studies of viral penetration, eclipse of infectivity, and uncoating of viral DNA indicated that the three events were closely related temporally, that the rates of each were similar, and that they were completed within 60 to 90 min after infection. Viral penetration, eclipse, and uncoating proceeded normally under conditions which blocked protein synthesis, but they did not occur at 0 to 4 C. Neither viral DNA nor viral protein was degraded to acid-soluble material during the eclipse period. The nature of adenovirus DNA was studied after it was converted intracellularly from deoxyribonuclease-resistant to deoxyribonuclease-susceptible. Intact virions centrifuged in sucrose gradients had a sedimentation coefficient of approximately 800, and viral DNA sedimented as a particle of about 30S. Infection of KB cells with purified (32)P-labeled virus yielded deoxyribonuclease-susceptible viral nucleic acid which was in particles with sedimentation coefficients of 350 to 450S, i.e., greater than 10 times faster than DNA obtained from purified virions which had been disrupted by exposure to pH 10.5. When the DNA from disrupted virions was mixed with cell lysates, its sedimentation characteristics were essentially unchanged by the presence of cellular material.  相似文献   

14.
15.
Epstein-Barr virus (EBV) BGLF4 is a viral protein kinase that is expressed in the lytic phase of infection and is packaged in virions. We report here that BGLF4 is a tegument protein that dissociates from the virion in a phosphorylation-dependent process. We also present evidence that BGLF4 interacts with and phosphorylates BZLF1, a key viral regulator of lytic infection. These conclusions are based on the following observations. (i) In in vitro tegument release assays, a significant fraction of BGLF4 was released from virions in the presence of physiological NaCl concentrations. (ii) Addition of physiological concentrations of ATP and MgCl(2) to virions enhanced BGLF4 release, but phosphatase treatment of virions significantly reduced BGLF4 release. (iii) A recombinant protein containing a domain of BZLF1 was specifically phosphorylated by purified recombinant BGLF4 in vitro, and BGLF4 altered BZLF1 posttranslational modification in vivo. (iv) BZLF1 was specifically coimmunoprecipitated with BGLF4 in 12-O-tetradecanoylphorbol-13-acetate-treated B95-8 cells and in COS-1 cells transiently expressing both of these viral proteins. (v) BGLF4 and BZLF1 were colocalized in intranuclear globular structures, resembling the viral replication compartment, in Akata cells treated with anti-human immunoglobulin G. Our results suggest that BGLF4 functions not only in lytically infected cells by phosphorylating viral and cellular targets but also immediately after viral penetration like other herpesvirus tegument proteins.  相似文献   

16.
Small heat shock proteins (sHsps) are molecular chaperones that protect cells from cytotoxic effects of protein misfolding and aggregation. HspB1, an sHsp commonly associated with senile plaques in Alzheimer's disease (AD), prevents the toxic effects of Aβ aggregates in vitro. However, the mechanism of this chaperone activity is poorly understood. Here, we observed that in two distinct transgenic mouse models of AD, mouse HspB1 (Hsp25) localized to the penumbral areas of plaques. We have demonstrated that substoichiometric amounts of human HspB1 (Hsp27) abolish the toxicity of Aβ oligomers on N2a (mouse neuroblastoma) cells. Using biochemical methods, spectroscopy, light scattering, and microscopy methods, we found that HspB1 sequesters toxic Aβ oligomers and converts them into large nontoxic aggregates. HspB1 was overexpressed in N2a cells in response to treatment with Aβ oligomers. Cultured neurons from HspB1-deficient mice were more sensitive to oligomer-mediated toxicity than were those from wild-type mice. Our results suggest that sequestration of oligomers by HspB1 constitutes a novel cytoprotective mechanism of proteostasis. Whether chaperone-mediated cytoprotective sequestration of toxic aggregates may bear clues to plaque deposition and may have potential therapeutic implications must be investigated in the future.  相似文献   

17.
We found that rotavirus-specific protein synthesis was not necessary for recognition by virus-specific cytotoxic T lymphocytes (CTLs). In addition, CTLs lysed rotavirus-infected target cells prior to production of infectious virus. Target cell processing of rotavirus antigens for presentation to CTLs was enhanced by treatment of rotavirus with trypsin prior to infection; trypsin-induced cleavage of the viral hemagglutinin (vp4) has previously been found to facilitate rotavirus entry into target cells by direct penetration of virions through the plasma membrane. We conclude that sufficient quantities of exogenous viral proteins may be introduced into the cytoplasm for processing by target cells. The mechanism by which rotavirus proteins are processed for presentation to the target cell surface remains to be determined.  相似文献   

18.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

19.
Morphogenesis of vaccinia virus begins with the appearance of crescent-shaped membrane precursors of immature virions in cytoplasmic factories. During the initial characterization of the product of the L2R reading frame, we discovered that it plays an important role in crescent formation. The L2 protein was expressed early in infection and was associated with the detergent-soluble membrane fraction of mature virions, consistent with two potential membrane-spanning domains. All chordopoxviruses have L2 homologs, suggesting an important function. Indeed, we were unable to isolate an infectious L2R deletion mutant. Consequently, we constructed an inducible mutant with a conditional lethal phenotype. When L2 expression was repressed, proteolytic processing of the major core proteins and the A17 protein, which is an essential component of the immature virion membrane, failed to occur, suggesting an early block in viral morphogenesis. At 8 h after infection in the presence of inducer, immature and mature virions were abundantly seen by electron microscopy. In contrast, those structures were rare in the absence of inducer and were replaced by large, dense aggregates of viroplasm. A minority of these aggregates had short spicule-coated membranes, which resembled the beginnings of crescent formation, at their periphery. These short membrane segments at the edge of the dense viroplasm increased in number at later times, and some immature virions were seen. Although the L2 protein was not detected under nonpermissive conditions, minute amounts could account for stunted and delayed viral membrane formation. These findings suggested that L2 is required for the formation or elongation of crescent membranes.  相似文献   

20.
The molecular basis of the inhibition of vesicular stomatitis virus (VSV) replication by pure recombinant gamma-interferon (IFN-gamma) in human amnion U cells was examined. A saturating concentration of IFN-gamma induced, at maximum, about a two log10 reduction in infectious VSV yield. The kinetics of induction of the antiviral activity by IFN-gamma were first order over the period of about 6-18 h, following a lag of about 3 h, after treatment with a saturating concentration of IFN-gamma. The relationship of the inhibition in VSV infectivity to the early and late events of the VSV multiplication cycle was investigated. IFN-gamma treatment had no detectable effect on the adsorption and penetration of VSV virions or on their uncoating to yield viral nucleocapsids. The polypeptides of adsorbed or uncoated VSV particles were neither preferentially degraded nor detectably altered in IFN-gamma-treated U cells, as compared to untreated U cells. Progeny virions isolated from IFN-gamma-treated U cells, although greatly reduced in number, were found to be equally as infectious as those isolated from untreated U cells. Progeny virions from IFN-gamma-treated cells also possessed the same composition of viral proteins as was observed for virions from untreated cells. These results suggest that conditions of IFN-gamma treatment sufficient to reduce the yield of infectious VSV progeny 100-fold do not detectably affect either the early or the late stages of the VSV multiplication cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号