首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ovule outer integument. Both these functions indicate a role for SUP in cell proliferation. To study the function of the Arabidopsis SUP gene in more detail, we over-expressed the SUP gene in petunia and tobacco in a tissue-specific manner. The petunia FLORAL BINDING PROTEIN 1 (FBP1) gene promoter was used to restrict the expression of SUP to petals and stamens. The development of petals and stamens was severely affected in both petunia and tobacco plants over-expressing SUP. Petals remained small and did not unfold, resulting in closed flowers. Stamen filaments were thin and very short. Detailed analysis of these floral organs from the petunia transformants showed that cell expansion was dramatically reduced without affecting cell division. These results reveal a novel activity for SUP as a regulator of cell expansion.  相似文献   

2.
We evaluated the capacity of the plant growth regulator thidiazuron (TDZ), a substituted phenylurea with high cytokinin-like activity, to promote organogenesis in petals and leaves of several carnation cultivars (Dianthus spp.), combined with 1-naphthaleneacetic acid (NAA). The involvement of the endogenous auxin indole-3-acetic acid (IAA) and purine-type cytokinins was also studied. Shoot differentiation was found to depend on the explant, cultivar and balance of growth regulators. TDZ alone (0.5 and 5.0 micromol/L) as well as synergistically with NAA (0.5 and 5.0 micromol/L) promoted shoot organogenesis in petals, and was more active than N6-benzyladenine. In petals of the White Sim cultivar, TDZ induced cell proliferation in a concentration-dependent manner and, on day 7 of culture, the proportion of meristematic regions in those petals allowed the prediction of shoot regeneration capacity after 30 days of culture. Immunolocalization of CK ribosides, N6-(delta2-isopentenyl)adenosine, zeatin riboside (ZR) and dihydrozeatin riboside (DHZR), in organogenic petals showed them to be highly concentrated in the tips of bud primordia and in the regions with proliferation capacity. All of them may play a role in cell proliferation, and possibly in differentiation, during the organogenic process. After seven days of culture of White Sim petals, NAA may account for the changes found in the levels of IAA and DHZR, whereas TDZ may be responsible for the remarkable increases in N6-(delta2-isopentenyl)adenine (iP) and ZR. ZR is induced by low TDZ concentrations (0.0-0.005 micromol/L), whereas iP, that correlates with massive cell proliferation and the onset of shoot differentiation, is associated with high TDZ levels (0.5 micromol/L). In addition to the changes observed in quantification and in situ localization of endogenous phytohormones during TDZ-induced shoot organogenesis, we propose that TDZ also promotes growth directly, through its own biological activity. To our knowledge, this study is the first to evaluate the effect of TDZ on endogenous phytohormones in an organogenic process.  相似文献   

3.
Cell-cell signaling is crucial for the coordination of cell division and differentiation during plant organogenesis. We have developed a novel mosaic analysis method for Arabidopsis, based on the maize Ac/Ds transposable element system, to assess the requirements of individual genes in intercellular signaling. Using this strategy, we have shown that the floral homeotic APETALA3 (AP3) gene has distinct roles in regulating intercellular signaling in different tissues. In petals, AP3 acts primarily in a cell-autonomous fashion to regulate cell type differentiation, but its function is also required in a non-cell-autonomous fashion to regulate organ shape. In contrast, AP3-regulated intercellular interactions are required for conferring both cell type identity and organ shape and size in the stamens. Using antibodies raised against AP3, we have shown that the AP3 protein does not traffic between cells. These observations imply that AP3 acts by differentially regulating the production of intercellular signals in a whorl-specific manner.  相似文献   

4.
The developmental context of cell-cycle control in plants   总被引:13,自引:0,他引:13  
Plant growth is characterised both by continued growth and organogenesis throughout development, as well as by environmental influences on the rate and pattern of these processes. This necessitates a close relationship between cell cycle control, differentiation and development that can be readily observed and studied. The sequencing of the Arabidopsis genome has revealed the full complexity of cell cycle regulators in plants, creating a challenge to understand how these genes control plant growth and differentiation, and how they are integrated with intrinsic and external signals. Here, we review the control of the cell cycle and examine how it is integrated with proliferative activity within meristems, and during the differentiation processes leading to leaf and lateral root formation.  相似文献   

5.
6.
Galichet A  Gruissem W 《Plant physiology》2006,142(4):1412-1426
In multicellular organisms, organogenesis requires tight control and coordination of cell proliferation, cell expansion, and cell differentiation. We have identified Arabidopsis (Arabidopsis thaliana) nucleosome assembly protein 1 (AtNAP1;1) as a component of a regulatory mechanism that connects cell proliferation to cell growth and expansion during Arabidopsis leaf development. Molecular, biochemical, and kinetic studies of AtNAP1;1 gain- or loss-of-function mutants indicate that AtNAP1;1 promotes cell proliferation or cell expansion in a developmental context and as a function of the farnesylation status of the protein. AtNAP1;1 was farnesylated and localized to the nucleus during the cell proliferation phase of leaf development when it promotes cell division. Later in leaf development, nonfarnesylated AtNAP1;1 accumulates in the cytoplasm when it promotes cell expansion. Ectopic expression of nonfarnesylated AtNAP1;1, which localized to the cytoplasm, disrupts this developmental program by promoting unscheduled cell expansion during the proliferation phase.  相似文献   

7.
To understand how differentiation and growth may be coordinated during development, we have studied the action of the CINCINNATA (CIN) gene of Antirrhinum. We show that in addition to affecting leaf lamina growth, CIN affects epidermal cell differentiation and growth of petal lobes. Strong alleles of cin give smaller petal lobes with flat instead of conical cells, correlating with lobe-specific expression of CIN in the wild type. Moreover, conical cells at the leaf margins are replaced by flatter cells, indicating that CIN has a role in cell differentiation of leaves as well as petals. A weak semidominant cin allele affects cell types mainly in the petal but does not affect leaf development, indicating these two effects can be separated. Expression of CIN correlates with expression of cell division markers, suggesting that CIN may influence petal growth, directly or indirectly, through effects on cell proliferation. For both leaves and petals, CIN affects growth and differentiation of the more distal and broadly extended domains (leaf lamina and petal lobe). However, while CIN promotes growth in petals, it promotes growth arrest in leaves, possibly because of different patterns of growth control in these systems.  相似文献   

8.
To identify genes involved in Arabidopsis thaliana petal and stamen organogenesis, we used a gene trap approach to examine the patterns of reporter expression at each stage of flower development of 1765 gene trap lines. In 80 lines, the reporter gene showed petal- and/or stamen-specific expression or lack of expression, or expression in distinct patterns within the petals and/or the stamens, including distinct suborgan domains of expression, such as tissue-specific lines marking epidermis and vasculature, as well as lines demarcating the proximodistal or abaxial/adaxial axes of the organs. Interestingly, reporter gene expression was typically restricted along the proximodistal axis of petals and stamens, indicating the importance of this developmental axis in patterning of gene expression domains in these organs. We identified novel domains of gene expression along the axis marking the midregion of the petals and apical and basal parts of the anthers. Most of the genes tagged in these 80 lines were identified, and their possible functions in petal and/or stamen differentiation are discussed. We also scored the floral phenotypes of the 1765 gene trap lines and recovered two mutants affecting previously uncharacterized genes. In addition to revealing common domains of gene expression, the gene trap lines reported here provide both useful markers and valuable starting points for reverse genetic analyses of the differentiation pathways in petal and stamen development.  相似文献   

9.
In contrast to animals, organogenesis in plants is continuous, allowing development in response to intrinsic and extrinsic signals. Organs arise from primordia formed on the flanks of meristems. The apical meristem produces primordia that acquire leaf identity, while floral meristems form primordia which develop into four organ types: sepals, petals, stamens and carpels. The production of mature organs involves two distinct processes, the initiation of organ primordia and the establishment of meristem, primordia and cell identities. Here we concentrate on floral organogenesis in Arabidopsis and examine the extent to which these processes utilize similar control mechanisms and regulatory molecules.  相似文献   

10.
A study of flavonoids occurring within a heterocyanic population of Trillium sessile was made to determine the chemical basis of a common floral color polymorphism in this species. In the study population, three floral color phenotypes (red, pink, yellow) are determined primarily by the presence or absence of anthocyanin compounds in the petal tissue, and secondarily by quantitative differences in the concentration of several flavonol glycosides. Petals of red phenotypes contain both cyanidin 3-arabinoside and 3-diarabinoside, petals of pink phenotypes contain only cyanidin 3-arabinoside, and petals of yellow phenotypes lack cyanidin entirely. Quercetin 3-0-glucoside, quercetin 3-0-arabinoglucoside, quercetin 3–0-arabinogalactoside, and quercetin 3-0-arabinogalactosyl, 7-0-glucoside occur in petals of all three phenotypes but differ in relative amounts. Petals of the red phenotype have mostly 3-0-biosides, but lesser amounts of both quercetin 3-0-glucoside and the 3,7-0-triglycoside. Petals of the pink phenotype contain relatively equal amounts of quercetin mono-, di-, and triglycosides. Petals of the yellow phenotypes contain mostly quercetin 3,7-0-triglycosides, and less mono- and di-glycosides. Small amounts of a quercetin tetraglycoside were detected in petals of both yellow and pink phenotypes, but not in red phenotypes. The enhancement of quercetin polyglycoside biosynthesis in yellow petal phenotypes is attributed to the shunting of dihydroflavonol precursors to synthesis of quercetin compounds when their conversion to anthocyanins is blocked genetically.  相似文献   

11.
Zhou Y  Wang H  Gilmer S  Whitwill S  Keller W  Fowke LC 《Planta》2002,215(2):248-257
The cyclin-dependent protein kinases (CDKs) have a central role in cell cycle regulation and can be inhibited by the binding of small protein CDK inhibitors. The first plant CDK inhibitor gene ICK1 was previously identified in Arabidopsis thaliana. In comparison to known animal CDK inhibitors, ICK1 protein exhibits unique structural and functional properties. The expression of ICK1 directed by the constitutive CaMV 35S promoter was shown to inhibit cell division and plant growth. The aim of this study was to determine the effects of ICK1 overexpression on particular organs and cells. ICK1 was expressed in specific tissues or cells of Brassica napus L. plants using two tissue-specific promoters, Arabidopsis AP3 and Brassica Bgp1. Transgenic AP3-ICK1 plants were morphologically normal except for some modified flowers either without petals or with petals of reduced size. Surprisingly, petals of novel shapes such as tubular petals were also observed, indicating a profound effect of cell division inhibition on morphogenesis. The cell size in the smaller modified petals was similar to that in control petals, suggesting that the reduction of petal size is mainly due to the reduction of cell numbers and that the inhibition of cell division does not necessarily lead to an increase in cell size. Transgenic Bgp1-ICK1 plants were normal morphologically; however, dramatic decreases in seed production were observed in some plants. In those plants, the ability of pollen to germinate and pollen nuclear number were affected. These results are discussed in relation to the cell cycle and plant development.  相似文献   

12.
13.
Position-dependent regulation of growth is important for shaping organs in multicellular organisms. We have characterized the role of JAGGED, a gene that encodes a protein with a single C(2)H(2) zinc-finger domain, in controlling the morphogenesis of lateral organs in Arabidopsis thaliana. Loss of JAGGED function causes organs to have serrated margins. In leaves, the blade region is most severely affected. In sepals, petals and stamens, the strongest defects are seen in the distal regions. By monitoring cell-cycle activity in developing petals with the expression of HISTONE 4, we show that JAGGED suppresses the premature differentiation of tissues, which is necessary for the formation of the distal region. The localization of defects overlaps with the expression domain of JAGGED, which is restricted to the growing regions of lateral organs. JAGGED expression is notably absent from the cryptic bract, the remnant of a leaf-like organ that subtends the flower in many species but does not normally develop in wild-type Arabidopsis. If misexpressed, JAGGED can induce the formation of bracts, suggesting that the exclusion of JAGGED from the cryptic bract is a cause of bractless flowers in Arabidopsis.  相似文献   

14.
Single or a group of somatic cells could give rise to the whole plant, which require hormones, or plant growth regulators. Although many studies have been done during past years, how hormones specify cell fate during in vitro organogenesis is still unknown. To uncover this mechanism, Arabidopsis somatic embryogenesis has been recognized as a model for studying in vitro plant organogenesis. In this paper, we showed that establishment of auxin gradients within embryonic callus is essential for inducing stem cell formation via PIN1 regulation. This study sheds new light on how hormone regulates stem cell formation during in vitro organogenesis.Key words: auxin gradients, PIN proteins, stem cell, somatic embryogenesis  相似文献   

15.
Floral development was compared among three taxa in caesalpinioid tribe Detarieae sensu lato: Amherstia nobilis and Tamarindus indica have racemose, helically arranged inflorescences, while Brownea latifolia has cauliflorous capitate flower clusters that arise as racemes. All have acropetal flower order; initiation and development are sequential in all except Brownea, which is synchronous. All have paired persistent showy bracteoles. Floral symmetry is dorsiventral (zygomorphic) in all except Brownea, with radial symmetry at anthesis. Sepals initiate helically on a circular floral apex, starting with a median abaxial sepal, in all. Petals are initiated helically in Brownea, and unidirectionally in Amherstia and Tamarindus. Stamens are initiated unidirectionally in each stamen whorl in all except Amherstia, in which the outer whorl is bidirectional. The carpel initiates concurrently with the petals in Brownea, and with the outer stamens in the other taxa. The two upper (adaxial) sepal primordia become fused during development in all, so that the calyx appears tetramerous. Some reduced petals occur in Amherstia and Tamarindus, and some reduced stamens occur in all. All produce a hypanthium by zonal growth, and all except Tamarindus have the gynoecium attached adaxially to the hypanthial rim.  相似文献   

16.
17.
The SCARFACE gene is required for cotyledon and leaf vein patterning   总被引:6,自引:0,他引:6  
Mechanisms controlling vein patterning are poorly understood. We describe a recessive Arabidopsis mutant, scarface (sfc), which maps to chromosome 5. sfc mutants have vein pattern defects in cotyledons, leaves, sepals and petals. In contrast to the wild type, in which these organs all have linear veins that are continuous with at least one other vein, in sfc mutants these organs' secondary and tertiary veins are largely replaced by small segments of discontinuous veins, which we call vascular islands. Patterning defects are manifest in cotyledon provascular tissue, suggesting that the patterning defect occurs early in organogenesis. sfc mutants have exaggerated responses to exogenous auxin. Analysis of monopteros (mp(T370)) sfc-1 double mutants suggested that SFC has partially overlapping functions with MP in patterning of both primary and secondary veins.  相似文献   

18.
19.
Cell-cycle regulation plays a crucial role in organogenesis, morphogenesis, growth and differentiation and conceptually offers a means to design a next generation of crop plants that outperform traditionally bred ones. However, cell-cycle regulation involves a large, highly redundant, set of genes, which complicates unravelling of function in the context of a higher plant. Nevertheless, ten years of molecular cell-cycle research, primarily in the model plant Arabidopsis, have demonstrated its potential for altering plant development.  相似文献   

20.

Background and Aims

The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes.

Methods

Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae.

Key Results

The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species.

Conclusions

Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.Key words: Epidermis, Fabaceae, Papilionoideae, Caesalpinioideae, Mimosoideae, petal surface, scanning electron microscopy, papillose conical cells, tabular rugose cells, tabular flat cells, organ identity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号