首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure to a high-carbohydrate (HC) milk formula during the suckling period results in permanent metabolic programming of hyperinsulinemia in HC rats. Previous studies have shown that hyperinsulinemia in HC rats involves a programmed hyperresponsiveness to glucose. However, the immediate onset and persistence of enhanced insulin secretion throughout life suggests a role for numerous factors that control insulin secretion. Present in vivo and in vitro studies have shown a role for altered autonomic activity, including increased parasympathetic and decreased sympathetic activities, in the maintenance of hyperinsulinemia in 100-day-old HC rats. HC rats were shown to be more sensitive to cholinergic-induced potentiation of glucose-stimulated insulin secretion (GSIS) in response to acetylcholine and showed increased sensitivity to blockade of cholinergic-induced insulin secretion by the muscarinic-type 3 receptor-specific antagonist 4-diphenylacetoxy-N-methylpiperidine. In addition, HC rats were less sensitive to adrenergic-induced inhibition of insulin secretion by oxymetazoline, whereas treatment with yohimbine resulted in increased GSIS. Furthermore, HC rats showed greater reductions in plasma insulin levels after vagotomy, as well as an attenuation of yohimbine-induced potentiation of GSIS, suggesting that yohimbine-mediated changes are mediated by parasympathetic activity. Changes in autonomic regulation of GSIS are supported by increased mRNA levels of the parasympathetic signaling molecules muscarinic-type 3 receptor, phospholipase Cbeta1, and protein kinase C-alpha and decreased levels of alpha(2a)-adrenergic receptors in islets from adult HC rats. In conclusion, metabolic programming of hyperinsulinemia throughout adulthood of HC rats involves changes in autonomic activity in response to the HC dietary intervention in the suckling period.  相似文献   

2.
We have previously shown that activation of P2X purinoceptors in the subpostremal nucleus tractus solitarius (NTS) produces a rapid bradycardia and hypotension. This bradycardia could occur via sympathetic withdrawal, parasympathetic activation, or a combination of both mechanisms. Thus we investigated the relative roles of parasympathetic activation and sympathetic withdrawal in mediating this bradycardia in chloralose-urethane anesthetized male Sprague-Dawley rats. Microinjections of the selective P2X purinoceptor agonist alpha,beta-methylene ATP (25 pmol/50 nl and 100 pmol/50 nl) were made into the subpostremal NTS in control animals, after atenolol (2 mg/kg i.v.), a beta1-selective antagonist, and after atropine methyl bromide (2 mg/kg i.v.), a muscarinic receptor antagonist. The bradycardia observed with activation of P2X receptors at the low dose of the agonist is mediated almost entirely by sympathetic withdrawal. After beta1-adrenergic blockade, the bradycardia was reduced to just -5.1 +/- 0.5 versus -28.8 +/- 5.1 beats/min in intact animals. Muscarinic blockade did not produce any significant change in the bradycardic response at the low dose. At the high dose, both beta1-adrenergic blockade and muscarinic blockade attenuated the bradycardia similarly, -37.4 +/- 6.4 and -40.6 +/- 3.7 beats/min, respectively, compared with -88.0 +/- 11 beats/min in control animals. Double blockade of both beta1-adrenergic and muscarinic receptors virtually abolished the response (-2.5 +/- 0.8 beats/min). We conclude that the relative contributions of parasympathetic activation and sympathetic withdrawal are dependent on the extent of P2X receptor activation.  相似文献   

3.
The present study tested the hypothesis that activation of the parasympathetic nervous system could attenuate sympathetic activation to the pancreas. To test this hypothesis, we measured pancreatic norepinephrine (NE) spillover (PNESO) in anesthetized dogs during bilateral thoracic sympathetic nerve stimulation (SNS; 8 Hz, 1 ms, 10 mA, 10 min) with and without (randomized design) simultaneous bilateral cervical vagal nerve stimulation (VNS; 8 Hz, 1 ms, 10 mA, 10 min). During SNS alone, PNESO increased from the baseline of 431 +/- 88 pg/min to an average of 5,137 +/- 1,075 pg/min (P < 0.05) over the stimulation period. Simultaneous SNS and VNS resulted in a significantly (P < 0.01) decreased PNESO response [from 411 +/- 61 to an average of 2,760 +/- 1,005 pg/min (P < 0.05) over the stimulation period], compared with SNS alone. Arterial NE levels increased during SNS alone from 130 +/- 11 to approximately 600 pg/ml (P < 0.05); simultaneous SNS and VNS produced a significantly (P < 0.05) smaller response (142 +/- 17 to 330 pg/ml). Muscarinic blockade could not prevent the effect of VNS from reducing the increase in PNESO or arterial NE in response to SNS. It is concluded that parasympathetic neural activity opposes sympathetic neural activity not only at the level of the islet but also at the level of the nerves. This neural inhibition is not mediated via muscarinic mechanisms.  相似文献   

4.
An early dietary intervention in the form of a high-carbohydrate (HC) milk formula in neonatal rat pups results in immediate onset of hyperinsulinemia. While increased insulin secretion in HC rats has been shown to be related to hypersensitivity to glucose, the immediate onset of hyperinsulinemia and its persistence throughout the suckling period suggest involvement of multiple systems that enhance insulin secretion in response to increased demand. Evidence presented here in 12-day-old HC rats indicates that altered activity of the autonomic nervous system contributes to enhanced insulin secretory responses to glucose stimulation through increased parasympathetic and decreased sympathetic signaling. Both in vivo and in vitro studies have shown that HC rats secrete significantly higher levels of insulin in response to glucose in the presence of acetylcholine, a cholinergic agonist, while sensitivity to inhibition of insulin secretion by oxymetazoline, an alpha(2a)-adrenergic receptor (alpha(2a)AR) agonist, was reduced. In addition, HC rats showed increased sensitivity to blockade of cholinergic-induced insulin secretion by the muscarinic type 3 receptor (M3R) antagonist 4-diphenylacetoxy-N-methylpiperidine methobromide, as well as increased potentiation of glucose-stimulated insulin secretion by treatment with yohimbine. Increases in islets levels of M3R, phospholipase C-beta1, and protein kinase Calpha mRNAs, as well as decreased alpha(2a)AR mRNA, in 12-day-old HC rats provide a mechanistic connection to the changes in insulin secretion seen in HC rats. In conclusion, altered autonomic regulation of insulin secretion, due to the HC nutritional intervention, contributes to the development of hyperinsulinemia in 12-day-old HC rats.  相似文献   

5.
We have observed that in chloralose-anesthetized animals, gastric distension (GD) typically increases blood pressure (BP) under normoxic normocapnic conditions. However, we recently noted repeatable decreases in BP and heart rate (HR) in hypercapnic-acidotic rats in response to GD. The neural pathways, central processing, and autonomic effector mechanisms involved in this cardiovascular reflex response are unknown. We hypothesized that GD-induced decrease in BP and HR reflex responses are mediated during both withdrawal of sympathetic tone and increased parasympathetic activity, involving the rostral (rVLM) and caudal ventrolateral medulla (cVLM) and the nucleus ambiguus (NA). Rats anesthetized with ketamine and xylazine or α-chloralose were ventilated and monitored for HR and BP changes. The extent of cardiovascular inhibition was related to the extent of hypercapnia and acidosis. Repeated GD with both anesthetics induced consistent falls in BP and HR. The hemodynamic inhibitory response was reduced after blockade of the celiac ganglia or the intraabdominal vagal nerves with lidocaine, suggesting that the decreased BP and HR responses were mediated by both sympathetic and parasympathetic afferents. Blockade of the NA decreased the bradycardia response. Microinjection of kainic acid into the cVLM reduced the inhibitory BP response, whereas depolarization blockade of the rVLM decreased both BP and HR inhibitory responses. Blockade of GABA(A) receptors in the rVLM also reduced the BP and HR reflex responses. Atropine methyl bromide completely blocked the reflex bradycardia, and atenolol blocked the negative chronotropic response. Finally, α(1)-adrenergic blockade with prazosin reversed the depressor. Thus, in the setting of hypercapnic-acidosis, a sympathoinhibitory cardiovascular response is mediated, in part, by splanchnic nerves and is processed through the rVLM and cVLM. Additionally, a vagal excitatory reflex, which involves the NA, facilitates the GD-induced decreases in BP and HR responses. Efferent chronotropic responses involve both increased parasympathetic and reduced sympathetic activity, whereas the decrease in BP is mediated by reduced α-adrenergic tone.  相似文献   

6.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

7.
The effect of cholinomimetic stimulation by infusion of edrophonium chloride or muscarinic blockade by infusion of atropine sulfate on insulin and GIP secretion was studied in normal lean subjects during eu- and hyperglycemia. Cholinomimetic stimulation led to a slight non-significant increase and muscarinic blockade to a slight, non-significant suppression of both GIP and insulin. No modification of the insulin secretion pattern was observed under either condition during hyperglycemia. The effect of atropine infusion on fasting plasma insulin and GIP was subsequently studied in 11 obese patients and 10 lean subjects. Muscarinic antagonism by atropine led to a transient non-significant suppression of GIP and insulin in lean subjects, but to a significant, sustained suppression of these hormones in obese patients. Insulin and GIP levels were however, not suppressed to control values after atropine administration in obese patients. A positive correlation was found between fasting plasma insulin and maximal suppression of insulin attained during the 30 min following administration of atropine. It is concluded that part of the hyperinsulinemia observed in human obesity is under the control of the parasympathetic nervous system. An abnormal balance between sympathetic inhibitory and parasympathetic stimulatory tones on insulin secretion, as observed in the VMH lesioned rat, might be present in human obesity.  相似文献   

8.
To investigate the role of the autonomic nervous system in controlling insulin secretion 13 normal subjects and 5 patients with heart failure underwent insulin secretion tests. Alpha-adrenergic stimulation and beta-receptor blockade significantly depressed the secretion of insulin in response to intravenous tolbutamide in normal subjects, while both alpha-blockade and beta-stimulation significantly increased the insulin secretion response in both normal subjects and patients in heart failure. Parasympathetic stimulation and blockade had no significant effect on the insulin secretion response. These findings suggest that drugs that block the alpha-adrenergic receptors or stimulate the beta-adrenergic receptors by their ability to counteract the insulin suppression resulting from increased sympathetic nervous activity may play a vital metabolic part in the deranged metabolism of the failing heart in addition to their direct haemodynamic benefits.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1), an incretin, which is used to treat diabetes mellitus in humans, inhibited vagal activity and activated nitrergic pathways. In rats, GLP-1 also increased sympathetic activity, heart rate, and blood pressure (BP). However, the effects of GLP-1 on sympathetic activity in humans are unknown. Our aims were to assess the effects of a GLP-1 agonist with or without alpha(2)-adrenergic or -nitrergic blockade on autonomic nervous functions in humans. In this double-blind study, 48 healthy volunteers were randomized to GLP-1-(7-36) amide, the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine acetate (l-NMMA), the alpha(2)-adrenergic antagonist yohimbine, or placebo (i.e., saline), alone or in combination. Hemodynamic parameters, plasma catecholamines, and cardiac sympathetic and parasympathetic modulation were measured by spectral analysis of heart rate. Thereafter, the effects of GLP-1-(7-36) amide on muscle sympathetic nerve activity (MSNA) were assessed by microneurography in seven subjects. GLP-1 increased (P = 0.02) MSNA but did not affect cardiac sympathetic or parasympathetic indices, as assessed by spectral analysis. Yohimbine increased plasma catecholamines and the low-frequency (LF) component of heart rate power spectrum, suggesting increased cardiac sympathetic activity. l-NMMA increased the BP and reduced the heart rate but did not affect the balance between sympathetic and parasympathetic activity. GLP-1 increases skeletal muscle sympathetic nerve activity but does not appear to affect cardiac sympathetic or parasympathetic activity in humans.  相似文献   

10.
The purpose of this study was to determine the role of the autonomic nervous system's control of the heart in fitness-related differences in blood pressure regulation. The cardiovascular responses to progressive lower-body negative pressure (LBNP) were studied during unblocked (control) and full blockade (experimental) conditions in 10 endurance-trained (T) and 10 untrained (UT) men, aged 20-31 yr. The experimental conditions included beta 1-adrenergic blockade (metoprolol tartrate), parasympathetic blockade (atropine sulfate), or complete blockade (metoprolol and atropine). Heart rate, blood pressure, forearm blood flow, and cardiac output were measured at rest and -16 and -40 Torr LBNP. Forearm vascular resistance, peripheral vascular resistance, and stroke volume were calculated from these measurements at each stage of LBNP. Blood pressure was maintained, primarily by augmented vasoconstriction, equally in T and UT subjects during complete and atropine blockade. The fall in systolic and mean pressure from 0 to -40 Torr was greater (P less than 0.05) in the T subjects during the unblocked and metoprolol blockade conditions. This reduced blood pressure control during unblocked condition was attributable to attenuated vaso-constrictor and chronotropic responses in the T subjects. We hypothesize that an autonomic imbalance (elevated base-line parasympathetic activity) in highly trained subjects restricts reflex cardiac responses, which accompanied by an attenuated vasoconstrictor response, results in attenuated blood pressure control during a steady-state hypotensive stress.  相似文献   

11.
In both parotid and submandibular glands a parasympathetic non-adrenergic, non-cholinergic (NANC) nerve-evoked secretion of saliva was demonstrated. Saliva evoked by exogenous substance P was poor in protein, while saliva evoked by VIP was protein-rich. In a subthreshold dose for fluid secretion VIP released protein and potentiated the responses elicited by substance P, particularly regarding the output of protein. The two neuropeptides may contribute to the parasympathetic NANC secretion of saliva in the mink. Further, agonists responsible for the secretory NANC response are also likely to contribute to the secretory response of the glands to parasympathetic stimulation in the absence of autonomic receptor blockade in this species.  相似文献   

12.
In this study, we investigated the way in which fetal insulin secretion is influenced by interrelated changes in blood glucose and sympathoadrenal activity. Experiments were conducted in late gestation sheep fetuses prepared with chronic peripheral and adrenal catheters. The fetus mounted a brisk insulin response to hyperglycemia but with only a minimal change in the glucose-to-insulin ratio, indicating a tight coupling between insulin secretion and plasma glucose. In well-oxygenated fetuses, alpha(2)-adrenergic blockade by idazoxan effected no change in fetal insulin concentration, indicating the absence of a resting sympathetic inhibitory tone for insulin secretion. With hypoxia, fetal norepinephrine (NE) and epinephrine secretion and plasma NE increased markedly; fetal insulin secretion decreased strikingly with the degree of change related to extant plasma glucose concentration. Idazoxan blocked this effect showing the hypoxic inhibition of insulin secretion to be mediated by a specific alpha(2)-adrenergic mechanism. alpha(2)-Blockade in the presence of sympathetic activation secondary to hypoxic stress also revealed the presence of a potent beta-adrenergic stimulatory effect for insulin secretion. However, based on an analysis of data at the completion of the study, this beta-stimulatory mechanism was seen to be absent in all six fetuses that had been subjected to a prior experimentally induced hypoxic stress but in only one of nine fetuses not subjected to this perturbation. We speculate that severe hypoxic stress in the fetus may, at least in the short term, have a residual effect in suppressing the beta-adrenergic stimulatory mechanism for insulin secretion.  相似文献   

13.
The Asian swamp eel (Monopterus albus) is an air-breathing teleost with very reduced gills that uses the buccal cavity for air-breathing. Here we characterise the cardiovascular changes associated with the intermittent breathing pattern in M. albus and we study the autonomic control of the heart during water- and air-breathing. The shift from water- to air-breathing was associated with a rise in heart rate from 27.7 ± 1.6 to 41.4 ± 2.6 min(-1) and an increase in cardiac output from 23.1 ± 3.0 to 58.7 ± 6.5 mLmin(-1)kg(-1), while mean systemic blood pressure did not change (39.0 ± 3.5 and 46.4 ± 1.3 cmH(2)O). The autonomic control of the heart during water- and air-breathing was revealed by infusion of the β-adrenergic antagonist propranolol and muscarinic antagonist atropine (3 mgkg(-1)) in eels instrumented with an arterial catheter. Inhibition of the sympathetic and parasympathetic innervations of the heart revealed a strong vagal tone on the heart of water-breathing eels and that the tachycardia during air-breathing is primarily mediated by withdrawal of cholinergic tone.  相似文献   

14.
GRP is a pancreatic neuropeptide and may be of importance for the neural control of insulin and glucagon secretion. In this study, we investigated the effects of GRP on basal and stimulated insulin and glucagon secretion in the mouse. Intravenous injections of GRP at dose levels exceeding 2.12 nmol/kg were found to rapidly increase basal plasma levels of both insulin and glucagon. Furthermore, at a low dose level without effect on basal plasma insulin levels, GRP was found to potentiate the insulin response to both glucose (by 40%; p less than 0.05) and to the cholinergic agonist carbachol (by 57%; p less than 0.01). Also, GRP was at this dose level found to potentiate the glucagon response to carbachol (p less than 0.01). Glucose abolished GRP-induced glucagon secretion. Moreover, methylatropine given at a dose level that totally abolishes carbachol-induced insulin secretion inhibited GRP-induced insulin secretion by 39% (p less than 0.05) and GRP-induced glucagon secretion by 25% (p less than 0.01). L-Propranolol at a dose level that totally abolishes beta-adrenergically-induced insulin secretion inhibited GRP-induced insulin secretion by 52% (p less than 0.01) and GRP-induced glucagon secretion by 15% (p less than 0.05). In summary, we have shown that GRP stimulates basal and potentiates stimulated insulin and glucagon secretion in mice, and that the stimulatory effects of GRP on insulin and glucagon secretion are partially inhibited by muscarinic blockade by methylatropine or by beta-adrenoceptor blockade by propranolol. We conclude that GRP activates potently both insulin and glucagon secretion in the mouse by mechanisms that are partially related to the muscarinic and the beta-adrenergic receptors.  相似文献   

15.
Ian Gibbins 《Organogenesis》2013,9(3):169-175
There is now abundant functional and anatomical evidence that autonomic motor pathways represent a highly organized output of the central nervous system. Simplistic notions of antagonistic all-or-none activation of sympathetic or parasympathetic pathways are clearly wrong. Sympathetic or parasympathetic pathways to specific target tissues generally can be activated tonically or phasically, depending on current physiological requirements. For example, at rest, many sympathetic pathways are tonically active, such as those limiting blood flow to the skin, inhibiting gastrointestinal tract motility and secretion, or allowing continence in the urinary bladder. Phasic parasympathetic activity can be seen in lacrimation, salivation or urination. Activity in autonomic motor pathways can be modulated by diverse sensory inputs, including the visual, auditory and vestibular systems, in addition to various functional populations of visceral afferents. Identifying the central pathways responsible for coordinated autonomic activity has made considerable progress, but much more needs to be done.  相似文献   

16.
1. Current evidence supports that C-type natriuretic peptide (CNP) is the brain natriuretic peptide. Natriuretic peptide receptors and mRNA CNP have been reported in the liver and in discrete areas and nucleus of the central nervous system involved in the regulation of gastrointestinal physiology. In the present work, we sought to establish the role of CNP in the central regulation of bile secretion in the rat and to delineate the possible pathways and mechanisms involved.2. To examine the role of CNP on bile secretion, the peptide was applied in the brain lateral ventricle (1, 10, and 100 ng/L) and bile samples were collected every 15 min for 60 min. The role of the autonomic nervous system in CNP response was assessed by atropine or combined phentolamine and propranolol administration.3. Centrally applied CNP diminished basal as well as bile salt-evoked bile flow in a dose-dependent manner. CNP reduced bile acid output as well as sodium and potassium excretion, supporting CNP effect on bile acid-dependent flow. CNP also decreased chloride excretion and increased bile pH. The excretion of total glutathione was not affected by centrally applied CNP suggesting that this peptide does not alter bile acid-independent flow. Neither parasympathetic nor sympathetic blockade abolished CNP inhibitory response on bile secretion. Mean arterial pressure and portal venous pressure were not modified by CNP.4. Present findings show that centrally applied CNP modulates bile secretion in a dose-dependent fashion. CNP alkalinized bile and reduced bile acid-dependent flow without affecting bile acid-independent flow. The inhibitory response of CNP on bile secretion was not mediated by the autonomic nervous system. Present findings give further support to the role of CNP as the brain natriuretic peptide.  相似文献   

17.
Objective: Body fatness is partly under hypothalamic control with effector limbs that include the endocrine system and the autonomic nervous system (ANS). In previous studies of both obese and never‐obese subjects, we have shown that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the effect of leptin, independent of weight change, on the ANS. Research Methods and Procedures: Normal weight males (ages 20–40 years) were fed a solid food diet, measured carefully to maintain body weight, for 3 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, 22‐day, placebo/drug/placebo design, six subjects received leptin 0.3 mg/kilogram subcutaneously for 6 days. ANS measures of amount of parasympathetic control and sympathetic control of heart period (interbeat interval) were made by sequential pharmacological blockade with intravenous atropine and esmolol. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were also measured as well as resting metabolic rate. Results: Sufficient food intake maintained constant body weight in all subjects. There was no evidence that leptin administration led to changes in energy metabolism sufficient to require additional food intake or to alter resting metabolic rate. Likewise, leptin administration did not alter autonomic activity. Parasympathetic control and sympathetic control, as well as the urinary catecholamines, were not significantly affected by leptin administration. Glucose and insulin levels were increased by food intake as expected, but leptin had no affect on these levels before or after food intake. Discussion: ANS responses to changes in energy metabolism found when food intake and body weight are altered were not found in these never‐obese subjects given leptin for 6 days. Although exogenous leptin administration has profound effects on food intake and energy metabolism in animals genetically deprived of leptin, we found it to have no demonstrable effect on energy metabolism in never‐obese humans. The effects of longer periods of administration to obese individuals and to those who have lost weight demand additional investigation.  相似文献   

18.
Objective: Body fatness is partly under hypothalamic control with effector limbs, which include the endocrine system and the autonomic nervous system (ANS). In previous studies we have shown, in both obese and never‐obese subjects, that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the involvement of such ANS mechanisms in the action of anti‐obesity drugs, independent of change in weight. Research Methods and Procedures: Normal weight males (ages 22 to 38 years) were fed a solid food diet, carefully measured to maintain body weight, for at least 2 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, placebo/drug/placebo design, eight subjects received dexfenfluramine, seven phentermine (PHE), and seven sibutramine (SIB). ANS measures of parasympathetic and sympathetic activity included: determination of amount of parasympathetic control (PC) and sympathetic control (SC) of heart period (interbeat interval), using sequential pharmacological blockade by intravenous administration of atropine and esmolol. These autonomic controls of heart period are used to estimate the overall level of parasympathetic and sympathetic activities. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were measured and also resting metabolic rate (RMR). Results: Sufficient food intake maintained constant body weight in all groups. PHE and SIB produced significant increases in SC but no change in PC or in RMR. In contrast, dexfenfluramine produced marked decreases in SC, PC, and RMR. For all three drugs, the effects on urine catecholamines directly paralleled changes in cardiac measures of SC. Discussion: ANS responses to PHE and SIB were anticipated. The large, and unanticipated, response to dexfenfluramine suggests further study to determine whether there could be any relation of these ANS changes to the adverse cardiovascular effects of treatment with dexfenfluramine.  相似文献   

19.
C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family. Previous studies reported the presence of natriuretic peptide receptors and mRNA CNP in the liver. In the present work, we sought to establish the role of CNP in the regulation of bile secretion in the rat and the possible pathways involved.CNP diminished basal as well as bile salt-evoked bile flow and bile acid output in a dose-dependent manner. It also reduced the excretion of sodium, chloride, and potassium but did not modify bile pH or the excretion of phospholipids, total proteins, and glutathione. Neither parasympathetic nor sympathetic blockade abolished CNP inhibitory response on bile secretion. The selective NPR-C agonist, C-ANP-(4-23) amide, diminished bile flow and the co-administration of both peptides did not further decrease it. CNP did not alter mean arterial pressure or portal venous pressure at any given doses.CNP decreased bile acid-dependent flow without affecting bile acid-independent flow. The inhibitory effect of CNP did not involve the participation of the autonomic nervous system or hemodynamic changes. The participation of NPR-C receptors in CNP response is strongly supported by present findings. The present study shows that CNP modulates bile secretion in the rat, suggesting that CNP may be part of the large family of peptides involved in the regulation of gastrointestinal physiology.  相似文献   

20.
A possible role of the autonomic nervous system in the left ventricular response to acute regional myocardial ischemia was sought in conscious dogs instrumented for measurement of left ventricular pressure, internal diameter, and aortic flow. Ischemia produced by occluding the left circumflex coronary artery caused tachycardia and reduced contractility. Changes during control occlusions were compared with those during occlusion.s after beta-adrenergic blockade, parasympathetic blockade, and combined sympathetic and parasymphatetic blockade. Beta-blockade did reduce the tachycardia and slightly reduced left ventricular diameter changes in response to coronary occlusion. Results obtained in animals following surgical cardiac sympathectomy indicated reduced tachycardia and no effects on other parameters. The principal effect of parasympathetic blockade was to augment the increase in end diastolic diameter during occlusion Right atrial pacing indicated this change was due to higher initial heart rates. Combined parasympathetic and sympathetic blockade did not alter inotropic responses to coronary occlusion. Results indicated that inotropic support due to changes in activity in autonomic nerves is not increased during acute occlusion of the left circumflex coronary artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号