首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) is one of the best-documented animal models of autoimmune disease. We examined the role of CD8+CD122+ regulatory T cells, which we previously identified as naturally occurring regulatory T cells that effectively regulate CD8+ T cells, in EAE. Depletion of CD8+CD122+ regulatory T cells by in vivo administration of anti-CD122 mAb resulted in persistent EAE symptoms. Transfer of CD8+CD122+ regulatory T cells into EAE mice at the peak EAE score clearly improved symptoms, indicating an important role of CD8+CD122+ regulatory T cells in the recovery phase of EAE. This was further confirmed by an increase and a decrease in the number of infiltrating T cells in the CNS and T cell cytokine production in mice that were depleted of or complemented with CD8+CD122+ cells. Furthermore, transfer of preactivated CD8+CD122+ regulatory T cells resulted in diminished EAE symptoms, especially in the recovery phase of EAE. These results elucidate the essential role of CD8+CD122+ regulatory T cells in the recovery phase of EAE and suggest the preventive effect of preactivated CD8+CD122+ regulatory T cells for EAE.  相似文献   

2.
Inoculation of Lewis rats with live or attenuated (irradiated or paraformaldehyde-fixed) CD4+ encephalitogenic T cells (S1 line) protects the recipients from transferred experimental autoimmune encephalomyelitis (tEAE) induced by S1 cells. A CD8+ T lymphocyte population specifically activated against the EAE-inducing S1 cells can be readily isolated from the lymphoid organs of pretreated animals. We show, in the present study, that encephalitogenic T cell lines derived from Lewis rats differ in their ability to induce resistance against tEAE in vivo and to stimulate CD8+ cell proliferation in vitro. We also demonstrate that the S19 line of encephalitogenic T cells, in combination with myelin basic protein (MBP), can stimulate CD8+ cell proliferation in vitro. The CD8+ cells generated in this way strongly suppress MBP-specific T cell proliferation in vitro. This combined effect of T cells and MBP was also evident in vivo. Neither S19 cells nor MBP alone induced resistance against S19-mediated tEAE, rather coinjection of these cells and MBP was required. Our results suggest that resistance to EAE is mediated by distinct populations of encephalitogenic T cells that activate Ts cells through different mechanisms. In some instances, both autoreactive T cells and their relevant autoantigen(s) may be needed to activate Ts cells in vivo.  相似文献   

3.
4.
We studied Rag2-deficient mice bearing two rearranged alphabeta TCR transgenes, both restricted to the MHC H-2D(b) class I molecule. We have previously shown that, in these DTg mice, most peripheral CD8 T cells express one TCRbeta chain associated with two TCRalpha chains, as in one-third of the mature T cells from normal mice. We examined the functional behavior of the dual-receptor CD8 T cells developing either in the absence or in the presence of self-Ag. The dual-receptor CD8 T cells, which develop in absence of self-Ag, show efficient responses to immunization and remain sensitive to induction of peripheral tolerance. In contrast to single TCR T cells, the dual-TCR cells, when tolerized upon exposure to high levels of self-Ag, are not deleted and therefore may exert important regulatory functions. When developing in the presence of self-Ag, the dual-receptor-expressing CD8 T cells escape central deletion, but are not fully competent to respond to cognate stimuli. Overall, we found that the dual-TCR CD8 T cells show a poor competitive value and can be out-competed by single-TCR cells, both in the course of immune responses and in reconstitution experiments. The decreased fitness of the dual-receptor cells may contribute to diminishing the autoimmune hazard that they could represent.  相似文献   

5.
APC exposed to TGFbeta2 and Ag (tolerogenic APC) promote peripheral Ag-specific tolerance via the induction of CD8(+) T regulatory cells capable of suppressing Th1 and Th2 immunity. We postulated that tolerogenic APC might reinstate tolerance toward self-neuronal Ags and ameliorate ongoing experimental autoimmune encephalomyelitis (EAE). Seven days after immunization with myelin basic protein (MBP), mice received MBP-specific tolerogenic APC, and EAE was evaluated clinically. To test for the presence and the phenotype of T regulatory cells, CD4 and/or CD8 T cells from tolerogenic APC-treated mice were transferred to naive mice before their immunization with MBP. The MBP-specific tolerogenic APC decreased both the severity and incidence of ongoing EAE. Tolerance to self-neuronal Ags was induced in naive recipient mice via adoptive transfer of CD8(+), but not CD4(+) T cells. Rational use of in vitro-generated tolerogenic APC may lead to novel therapy for autoimmune disease.  相似文献   

6.
A better understanding of the regulatory role of genital tract T cells is much needed. In this study, we have analyzed the phenotype, distribution, and function of T lymphocytes in the female genital tract of naive, pregnant, or Chlamydia trachomatis-infected C57BL/6 mice. Unexpectedly, we found that the dominant lymphocyte population (70-90%) in the genital tract was that of CD3(+)alphabetaTCR(int)CD4(-)CD8(-) T cells. Moreover, these cells were CD90(low) but negative for the classical T cell markers CD2 and CD5. The CD3(+)B220(low) cells were NK1.1 negative and found in nude mice as well as in mice deficient for MHC class II, beta(2)-microglobulin, and CD1, indicating extrathymic origin. They dominated the KJ126(+)Vbeta8.2(+) population in the genital tract of DO11.10 OVA TCR-transgenic mice, further supporting the idea that the CD3(+)B220(low) cells are truly T cells. The function of these T cells appeared not to be associated with immune protection, because only CD4(+) and CD8(+) T cells increased in the genital tract following chlamydial infection. Notwithstanding this, the infected, as well as the uninfected and the pregnant, uterus was dominated by a high level of the CD3(+)CD4(-)CD8(-)B220(low) cells. Following in vitro Ag or polyclonal stimulation of the CD3(+)CD4(-)CD8(-)B220(low) cells, poor proliferative responses were observed. However, these cells strongly impaired splenic T cell proliferation in a cell density-dependent manner. A large fraction of the cells expressed CD25 and produced IFN-gamma upon anti-CD3 plus anti-CD28 stimulation, arguing for a strong regulatory role of this novel T cell population in the mouse female genital tract.  相似文献   

7.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

8.
Immunodominance in self-Ag-reactive pathogenic CD4(+) T cells has been well established in several experimental models. Although it is clear that regulatory lymphocytes (Treg) play a crucial role in the control of autoreactive cells, it is still not clear whether immunodominant CD4(+) Treg clones are also involved in control of autoreactivity. We have shown that TCR-peptide-reactive CD4(+) and CD8(+) Treg play an important role in the spontaneous recovery and resistance from reinduction of experimental autoimmune encephalomyelitis in B10.PL mice. We report, by sequencing of the TCR alpha- and beta-chain associated with CD4(+) Treg, that the TCR repertoire is limited and the majority of CD4(+) Treg use the TCR Vbeta14 and Valpha4 gene segments. Interestingly, sequencing and spectratyping data of cloned and polyclonal Treg populations revealed that a dominant public CD4(+) Treg clonotype expressing Vbeta14-Jbeta1.2 with a CDR3 length of 7 aa exists in the naive peripheral repertoire and is expanded during the course of recovery from experimental autoimmune encephalomyelitis. Furthermore, a higher frequency of CD4(+) Treg clones in the naive repertoire correlates with less severity and more rapid spontaneous recovery from disease in parental B10.PL or PL/J and (B10.PL x PL/J)F(1) mice. These findings suggest that unlike the Ag-nonspecific, diverse TCR repertoire among the CD25(+)CD4(+) Treg population, TCR-peptide-reactive CD4(+) Treg involved in negative feedback regulation of autoimmunity use a highly limited TCR V-gene repertoire. Thus, a selective set of immunodominant Treg as well as pathogenic T cell clones can be targeted for potential intervention in autoimmune disease conditions.  相似文献   

9.
A major goal of immunotherapy for autoimmune diseases and transplantation is induction of regulatory T cells that mediate immunologic tolerance. The mucosal immune system is unique, as tolerance is preferentially induced after exposure to antigen, and induction of regulatory T cells is a primary mechanism of oral tolerance. Parenteral administration of CD3-specific monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We found that orally administered CD3-specific antibody is biologically active in the gut and suppresses autoimmune encephalomyelitis both before induction of disease and at the height of disease. Orally administered CD3-specific antibody induces CD4+ CD25- LAP+ regulatory T cells that contain latency-associated peptide (LAP) on their surface and that function in vitro and in vivo through a TGF-beta-dependent mechanism. These findings identify a new immunologic approach that is widely applicable for the treatment of human autoimmune conditions.  相似文献   

10.
Phenotypic analysis of the medullary-type CD4+CD8- (CD4SP) thymocytes have revealed phenotypic heterogeneity within these cells. The phenotype of mature peripheral T cells is Qa-2+ HSA- CD69-, whereas in the medullary-type CD4SP thymocytes, the expression pattern of many markers were quite different, suggesting that the medullary-type CD4SP thymocytes may undergo phenotypic maturation. According to the results of two-color cytometry, seven discrete phenotypes were defined by the relative expression of Qa-2, HSA, CD69, 3G11 and 6C10: 3G11-6C10+CD69+HSAhi-->3G11+6C10+CD69+ HSAhi-->3G11+6C10-CD69+HSAint-->3G11+6C10- CD69-HSAint Qa-2(-)-->3G11+HSAlo/-Qa-2lo, at the same time, 3G11+6C10-CD69-HSAint Qa-2(-)-->3G11-HSAlo Qa-2(-)-->3G11-HSAlo/- Qa-2hi, the last two Qa-2 positive subsets could exit the thymus and home into periphery.  相似文献   

11.
In general, TGFbeta is synthesized as a procytokine that requires proteolytic activation, release of the mature cytokine from its noncovalently associated latent-associated peptide, and binding to TGFbetaRII to mediate suppressive activity. We tracked this process in mice containing primed CD8 regulatory T cells (Tregs) by immunoblotting in primary whole cell lysates for pro-TGFbeta, latent-associated peptide and mature TGFbeta. Generation of CD8 Tregs promoted processing of the 50 kDa pro-TGFbeta protein into a 12.5 kDa mature TGFbeta species in vivo. Despite the inability to detect mature TGFbeta in the sera of mice with primed CD8 Tregs and in the synthetic culture medium of stimulated CD8 Tregs, we demonstrated engagement of TGFbetaRII through immunoblotting for Smad2 phosphorylation. This process relied on continual TCR triggering, which also induced Smad3 phosphorylation. To understand the movement of mature TGFbeta, we showed that in contrast to IFN-gamma, mature TGFbeta does not remain a soluble cytokine but is likely to be rapidly adsorbed by neighboring cells. These data show the exquisite local control directed toward TGFbeta by the immune system and underscore the fine specificity involved in its detection.  相似文献   

12.
The pathogenesis of multiple sclerosis requires the participation of effector neuroantigen-specific T cells. Thus, T cell targeting has been proposed as a promising therapeutic strategy. However, the mechanism underlying effective disease prevention following T cell targeting remains incompletely known. We found, using several TCR-transgenic strains, that CD4 blockade is effective in preventing experimental autoimmune encephalopathy and in treating mice after the disease onset. The mechanism does not rely on direct T cell depletion, but the anti-CD4 mAb prevents the proliferation of naive neuroantigen-specific T cells, as well as acquisition of effector Th1 and Th17 phenotypes. Simultaneously, the mAb favors peripheral conversion of Foxp3(+) regulatory T cells. Pre-existing effector cells, or neuroantigen-specific cells that undergo cell division despite the presence of anti-CD4, are committed to apoptosis. Therefore, protection from experimental autoimmune encephalopathy relies on a combination of dominant mechanisms grounded on regulatory T cell induction and recessive mechanisms based on apoptosis of neuropathogenic cells. We anticipate that the same mechanisms may be implicated in other T cell-mediated autoimmune diseases that can be treated or prevented with Abs targeting T cell molecules, such as CD4 or CD3.  相似文献   

13.
The TCR repertoire of an immunodominant CD8+ T lymphocyte population   总被引:3,自引:0,他引:3  
The TCR repertoire of an epitope-specific CD8(+) T cell population remains poorly characterized. To determine the breadth of the TCR repertoire of a CD8(+) T cell population that recognizes a dominant epitope of the AIDS virus, the CD8(+) T cells recognizing the tetrameric Mamu-A*01/p11C(,CM) complex were isolated from simian immunodeficiency virus (SIV)-infected Mamu-A*01(+) rhesus monkeys. This CD8(+) T cell population exhibited selected usage of TCR V beta families and complementarity-determining region 3 (CDR3) segments. Although the epitope-specific CD8(+) T cell response was clearly polyclonal, a dominance of selected V beta(+) cell subpopulations and clones was seen in the TCR repertoire. Interestingly, some of the selected V beta(+) cell subpopulations and clones maintained their dominance in the TCR repertoire over time after infection with SIV of macaques. Other V beta(+) cell subpopulations declined over time in their relative representation and were replaced by newly evolving clones that became dominant. The present study provides molecular evidence indicating that the TCR repertoire shaped by a single viral epitope is dominated at any point in time by selected V beta(+) cell subpopulations and clones and suggests that dominant V beta(+) cell subpopulations and clones can either be stable or evolve during a chronic infection.  相似文献   

14.
15.
Autoreactive CD4(+) T cells exist in normal individuals and retain the capacity to initiate autoimmune disease. The current study investigates the role of CD4(+)CD25(+) T-regulatory (T(R)) cells during autoimmune disease using the CD4(+) T cell-dependent myelin oligodendrocyte glycoprotein (MOG)-specific experimental autoimmune encephalomyelitis model of multiple sclerosis. In vitro, T(R) cells effectively inhibited both the proliferation of and cytokine production by MOG(35-55)-specific Th1 cells. In vivo, adoptive transfer of T(R) cells conferred significant protection from clinical experimental autoimmune encephalomyelitis which was associated with normal activation of autoreactive Th1 cells, but an increased frequency of MOG(35-55)-specific Th2 cells and decreased CNS infiltration. Lastly, transferred T(R) cells displayed an enhanced ability to traffic to the peripheral lymph nodes and expressed increased levels of the adhesion molecules ICAM-1 and P-selectin that may promote functional interactions with target T cells. Collectively, these findings suggest that T(R) cells contribute notably to the endogenous mechanisms that regulate actively induced autoimmune disease.  相似文献   

16.
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.  相似文献   

17.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

18.
The alphaEbeta7 integrin CD103 may direct lymphocytes to its ligand E-cadherin. CD103 is expressed on T cells in lung and gut and on allograft-infiltrating T cells. Moreover, recent studies have documented expression of CD103 on CD4+ regulatory T cells. Approximately 4% of circulating CD8+ T cells bear the CD103 molecule. In this study, we show that the absence or presence of CD103 was a stable trait when purified CD103- and CD103+ CD8+ T cell subsets were stimulated with a combination of CD3 and CD28 mAbs. In contrast, allostimulation induced CD103 expression on approximately 25% of purified CD103- CD8+ T cells. Expression of CD103 on alloreactive cells was found to be augmented by IL-4, IL-10, or TGF-beta and decreased by addition of IL-12 to MLCs. The alloantigen-induced CD103+ CD8+ T cell population appeared to be polyclonal and retained CD103 expression after restimulation. Markedly, in vitro-expanded CD103+ CD8+ T cells had low proliferative and cytotoxic capacity, yet produced considerable amounts of IL-10. Strikingly, they potently suppressed T cell proliferation in MLC via a cell-cell contact-dependent mechanism. Thus, human alloantigen-induced CD103+ CD8+ T cells possess functional features of regulatory T cells.  相似文献   

19.
A major pathogenic factor for the development of inflammatory bowel disease (IBD) is the breakdown of the intestinal homeostasis between the host immune system and the luminal microenvironment. To assess the potential influence of luminal Ags on the development of IBD, we fed TCR alpha(-/-) mice an elemental diet (ED). ED-fed TCR alpha(-/-) mice showed no pathologic features of IBD, and their aberrant mucosal B cell responses were suppressed. Similar numbers of CD4(+), TCR betabeta homodimer T cells (betabeta T cells) were developed in the colonic mucosa of ED-fed mice; however, Th2-type cytokine productions were lower than those seen in diseased regular diet (RD)-fed mice. The higher cytokine production in diseased RD-fed mice could be attributed to the high incidence of Bacteroides vulgatus (recovered in 80% of these mice), which can induce Th2-type responses of colonic CD4(+), betabeta T cells. In contrast, ED-fed TCR alpha(-/-) mice exhibited a diversification of Vbeta usage of betabetaT cell populations from the dominant Vbeta8 one associated with B. vulgatus in cecal flora to Vbeta6, Vbeta11, and Vbeta14. Rectal administration of disease-free ED-fed mice with B. vulgatus resulted in the development of Th2-type CD4(+), betabeta T cell-induced colitis. These findings suggest that the ED-induced alteration of intestinal microenvironments such as the enteric flora prevented the development of IBD in TCR alpha(-/-) mice via the immunologic quiescence of CD4(+), betabeta T cells.  相似文献   

20.
Intraepithelial lymphocytes (IEL) of the small intestine are anatomically positioned to be in the first line of cellular defense against enteric pathogens. Therefore, determining the origin of these cells has important implications for the mechanisms of T cell maturation and repertoire selection. Recent evidence suggests that murine CD8 alpha alpha intestinal IELs (iIELs) can mature and undergo selection in the absence of a thymus. We analyzed IEL origin by cell transfer, using two congenic chicken strains. Embryonic day 14 and adult thymocytes did not contain any detectable CD8 alpha alpha T cells. However, when TCR(+) thymocytes were injected into congenic animals, they migrated to the gut and developed into CD8alphaalpha iIELs, while TCR(-) T cell progenitors did not. The TCR V beta 1 repertoire of CD8 alpha alpha(+) TCR V beta 1(+) iIELs contained only part of the TCR V beta 1 repertoire of total iIELs, and it exhibited no new members compared with CD8(+) T cells in the thymus. This indicated that these T cells emigrated from the thymus at an early stage in their developmental process. In conclusion, we show that while CD8 alpha alpha iIELs originate in the thymus, T cells acquire the expression of CD8 alpha alpha homodimers in the gut microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号