首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of elemental or sulfane sulfur to hydrogen sulfide by eubacteria was investigated. Spirillum 5175 had the most active sulfur oxidoreductase. It could be cultivated with fumarate (F), elemental sulfur (S) or nitrate (N) as electron acceptor. Maximum activity was found for Spirillum 5175S but activity was also present in Spirillum 5175F and Spirillum 5175N, i.e. the sulfur oxidoreductase is a constitutive enzyme. It was localized in the membrane, and no activity was found in the cytoplasm in contrast to Desulfovibrio baculatus. Different procedures were applied for the measurement of the sulfur oxidoreductase activity. In the manometric assay hydrogenase was coupled to the sulfur oxidoreductase, and the uptake of dihydrogen was measured in the presence of elemental sulfur. Alternatively, H2S was assayed directly or was trapped in 12% NaOH and determined by the methylene blue procedure. Using 35S sulfur and 35S-labelled compounds both the substrate and H2S could be measured. A further increase in sensitivity was achieved using phenosafranin. It was reduced photochemically, and served as the electron donor to the sulfur oxidoreductase, i.e. no hydrogenase was required. This was an important result in view of the fact that not all sulfur-reducing bacteria contain hydrogenase. However, in those cases the hydrogenase isolated from Clostridium pasteurianum could be coupled to the sulfur oxidoreductase. Among the different forms of elemental sulfur Janek sulfur gave the best results in terms of activity and reproducibility. The reduction of elemental sulfur to hydrogen sulfide had a pH optimum at pH 8.7–8.9. There was always a lag-phase which was pH-dependent. During this period the turbidity of the solution changed. Addition of thiols, such as GSH, shortened the lag-phase and caused an increase in activity of the sulfur oxidoreductase. In the presence of p-chloromercuribenzenesulfonic acid the reaction rate decreased significantly. Comparable reaction rates and activity values of the sulfur oxidoreductase in Spirillum 5175F were obtained with organic trisulfides, RS-S-SR. In contrast to elemental sulfur RS-S-SR are well-defined chemical compounds suitable for quantitative and mechanistic investigations. Labelling the central sulfur of RS-S-SR with 35S gave a satisfactory recovery of the total radioactivity in form of (35S) H2S in our assay. Trisulfides were shown to be formed as reactive intermediates in bacteria. This process required the sulfur transferase rhodanese which was present in Spirillum 5175, or other sulfur-reducing eubacteria.Abbreviations EPR Electron Paramagnetic Resonance - A Absorbance - PCMS p-chloromercuribenzenesulfonic acid - Sp. 5175F Splrillum 5175 grown with fumarate - Sp. 5175S with sulfur - Sp. 5175N with nitrate - SCE Standard Calomel Electrode  相似文献   

2.
Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.  相似文献   

3.
The halophilic archaebacterium, Halobacterium halobium has been found to contain four different b-type cytochromes. The four components were recognized by their potentiometric characteristics in situ in their functional environment in the membrane of H. halobium. Oxidation-reduction midpoint potentials of these four b-type cytochromes were determined to be +261, +160, +30, and -153 mV, respectively. We also demonstrate that the pathway involved in the transport of reducing equivalents from succinate to oxygen proceeds through the b-type cytochromes with oxidation-reduction midpoint potentials of +261 and +161 mV. The cytochrome with oxidation-reduction midpoint potential of -153 mV was not substrate reducible by NADH but was chemically reducible by dithionite. Antimycin inhibits reduction of b-type cytochrome in the succinate pathway, but has no effect on b-type cytochrome reduction when reducing equivalents are provided by NADH. The carbon monoxide difference spectrum of H. halobium membranes shows at least one carbon monoxide-binding b-type cytochrome, indicating a terminal oxidase. A scheme for electron transport in H.halobium involving the b-type cytochromes and terminal oxidase is suggested.  相似文献   

4.
Anaerobic sea or fresh water media with acetate and elemental sulfur yielded enrichments of a new type of strictly anaerobic, rod-shaped, laterally flagellated, Gram-negative bacterium. Three pure culture-strains from different sulfide-containing sea water sources were characterized in detail and are described as a new genus and species Desulfuromonas acetoxidans.The new bacterium is unable to ferment organic substances; it obtains energy for growth by anaerobic sulfur respiration. Acetate, ethanol or propanol can serve as carbon and energy source for growth; their oxidation to CO2 is stoichiometrically linked to the reduction of elemental sulfur to sulfide. Organic disulfide compounds, malate or fumarate are the only other electron acceptors used. Butanol and pyruvate are used in the presence of malate only; no other organic compounds are utilized. Biotin is required as a growth factor. The following dry weight yields per mole of substrate are obtained: in the presence of sulfur: 4.21 g on acetate, 9.77 g on ethanol; in the presence of malate: 16.5 g on acetate, 34.2 g on ethanol and 46.2 g on pyruvate. Accumulations of cells are pink; cell suspensions exhibit absorption spectra resembling those of c-type cytochromes (abs. max. at 419, 523 and 553 nm). Malate-ethanol grown cells contain a b-type cytochrome in addition.In the presence of acetate, ethanol or propanol, Desulfuromonas strains form robust growing syntrophic mixed cultures with phototrophic green sulfur bacteria.Dedicated to Prof. Roger Y. Stanier on the occasion of his 60th barthday  相似文献   

5.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio alginolyticus was inactivated by reactive oxygen species. Highest Na+-NQR activity was observed in anaerobically prepared membranes that exhibited 1:1 coupling of NADH oxidation and Q reduction activities (1.6 U x mg(-1)). Optical and EPR spectroscopy documented the presence of b-type cytochromes, a [2Fe-2S] cluster and an organic radical signal in anaerobically prepared membranes from V. alginolyticus. It is shown that the [2Fe-2S] cluster previously assigned to the Na+-NQR originates from the succinate dehydrogenase or the related enzyme fumarate reductase.  相似文献   

6.
The effect of antimycin on (i) the respiratory activity of the KCN-insensitive pathway of mitochondria of Neurospora grown on chloramphenicol (chloramphenicol-grown) with durohydroquinone and succinate or NADH as substrate, (ii) the electron transfer from the b-type cytochromes to ubiquinone with durohydroquinone as electron donor as well as (iii) the electron transfer from the b-type cytochromes to duroquinone with succinate as electron donor in chloramphenicol-grown Neurospora and beef heart submitochondrial particles was studied. All experiments were performed in the uncoupled state. 1. The respiratory chain of chloramphenicol-grown Neurospora mitochondria branches at ubiquinone into two pathways. Besides the cytochrome oxidase-dependent pathway, a KCN-insensitive branch equiped with a salicylhydroxamate-sensitive oxidase exists. Durohydroquinone, succinate or NADH are oxidized via both pathways. The durohydroquinone oxidation via the KCN-insensitive pathway is inhibited by antimycin, wheras the succinate or NADH oxidation is not. The titer for ful inhibition is one mol antimycin per mol cytochrome b-563 or cytochrome b-557. 2. The electron transfer from durohydroquinone to ubiquinone, which takes place in the KCN-inhibited state, does not occur in the antimycin-inhibited state. 3. The reduction of duroquinone by succinate in the presence of KCN is inhibited by antimycin. The titer for full inhibition is one mol antimycin per mol cytochrome b-566 or cytochrome b-562 for beef heart (or cytochrome b-563 or cytochrome b-557 for Neurospora). 4. When electron transfer from the b-type cytochromes to cytochrome C1, ubiquinone and duroquinone is inhibited by antimycin, the hemes of cytochrome b-566 and cytochrome b-562 (or cytochrome b-563 and cytochrome b-557) are in the reduced state. 5. The experimental results suggest that the two b-type cytochromes form a binary complex the electron transferring activity of which is inhibited by antimycin, the titer for full inhibition being one mol of antimycin per mol of complex. The electron transfer from the b-type cytochromes to ubiquinone is inhibited in a non-linear fashion.  相似文献   

7.
The oxidation-reduction midpoint potentials were determined for two b-type cytochromes, which had been solubilized from the membrane of Halobacterium halobium and partially purified. The two b-type cytochromes have oxidation-reduction midpoint potentials of 175 and 7 mV, respectively. These b-type cytochromes could also be resolved by difference absorption spectroscopy, which revealed one b-type cytochrome with absorption maximum (alpha-peak) at 558 nm, reducible by ascorbate-tetramethyl-p-phenylenediamine, and the other with absorption maximum (alpha-peak) at 560 nm, reducible by dithionite. Different substrates such as succinate, NADH, and alpha-glycerophosphate were used to study the b-type cytochromes in situ when bound to the membrane in a functional state. Reducing equivalents from succinate and alpha-glycerophosphate appear to enter the respiratory chain at the 175 mV b-type cytochrome. Cytochrome a3 is spectrophotometrically shown to be present in the membrane of H. halobium.  相似文献   

8.
Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC ). Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alphabeta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa mono-heme cytochrome c(552) subunit (midpoint redox potential, E(m8.0) = +280 mV). The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K(m) values for sulfite and cytochrome c(550) were determined to be 27 and 4 micrometer, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.  相似文献   

9.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

10.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

11.
A membrane potential jump was induced by the addition of valinomycin in the presence of a KCl concentration gradient across the membrane of Rhodopseudomonas sphaeroides chromatophores. As well as a carotenoid band shift, which is known to be an indicator of membrane potential, absorbance changes due to the oxidation-reduction reactions of cytochromes accompanied the jump. Under aerobic conditions with no reductant added, a part of cytochrome c2 was reduced by an inside-positive potential jump of about 100 mV in the time range of tens of seconds. This can be explained by the location of the cytochrome on the inner side of the chromatophore membrane and electrophoretic flow of electrons across the membrane. On the other hand, in the presence of 1 mM ascorbate, a similar jump of membrane potential induced a rapid oxidation of cytochrome c2 and a subsequent reduction. A rapid reduction of b-type cytochrome was also observed. Antimycin A inhibited the c2 oxidation, but did not inhibit the b reduction. The oxidation of cytochrome c2 may be explained by a diffusion-potential-induced electron flow to cytochrome b and a simultaneous electron donation by cytochrome b and cytochrome c2 to a common electron acceptor, possibly a quinone.  相似文献   

12.
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed.  相似文献   

13.
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed.  相似文献   

14.
Magnetic interactions operating between the Chromatium vinosum reaction center associated c-cytochromes and the electron carriers of the reaction center have been assayed by comparing the magnetic properties of these components alone, and in various combinations with paramagnetic forms of the reaction center electron carriers. These studies have yielded the following results. 1. The oxidized paramagnetic forms of the high potential cytochromes c-555 produce no discernable alteration of the light-induced (BChl)2.+signal. 2. Similarly, analysis of the lineshape of the light-induced (BChl)2.+signal shows that a magnetic interaction with the oxidized low potential cytochromes c-553 is likely to produce less than a 1 gauss splitting of the (BChl)2.+signal, which corresponds to a minimum separation of 25 +/- 3 A between the unpaired spins if the heme and (BChl)2 are orientated in a coplanar arrangement, suggesting a minimum separation of 15+/- 3A between the heme edge and the (BChl)2 edge. 3. a prominent magnetic interaction is observed to operate between the cytochrome c-553 and c-555, which results in a 30-35 gauss splitting of these spectra, and suggests an iron to iron separation of about 8 A.4. Magnetic interactions are not observed between the c-cytochromes and the reaction center "primary acceptor" (the iron . quinone complex) nor with the reaction center intermediate electron carrier (which involves bacteriopheophytin) suggesting separations greater than 10 A. 5. Magnetic interactions are not discerned between the two cytochrome c-553 hemes, nor between the two cytochrome c-555 hemes, implying that the distance between the cytochromes of the same pair is greater than 10 A. 6. EPR studies of oriented chromatophores have demonstrated that the cytochrome c-553 and c-555 hemes are perpendicular to each other, and suggest that the cytochrome c-553 heme plane lies parallel to the plane of the membrane, while the cytochrome c-555 heme plane lies perpendicular to the plane of the membrane surface.  相似文献   

15.
A new type of thermophilic cyanobacterial mat, rich in elemental sulfur and containing large numbers of sulfur-reducing bacteria able to utilize different growth substrates at 55° C, was found in the Uzon caldere (Kamchatka). One of the largest groups among these organisms were acetate-oxidizing sulfur-reducing bacteria, numbering 106 cells · cm–3 of mat. The pure culture of a sulfur-reducing eubacterium growing on acetate was isolated. Cells of the new isolate are Gram-negative short rods, often in pairs, motile, with a single polar flagellum. The optimal temperature for growth is 52 to 57° C, with no growth observed at 42 or 73° C. The pH optimum is 6.8 to 7.0. The new isolate is demonstrated to be a true dissimilatory sulfur reducer: it is an obligate anaerobe, it is unable to ferment organic substrates and it can use no electron acceptors other than elemental sulfur. Acetate is the only energy and carbon source, and H2S and CO2 are growth products. No cytochromes were detected. The G+C content of DNA is rather low, only 31.4 mol%. Thus, morphological and physiological features of the new isolate are quite close to those of Desulfuromonas. But on the grounds of a significant difference in the G+C content of DNA, the absence of cytochromes and because of its thermophilic nature, a new genus Desulfurella is proposed with the type species Desulfurella acetivorans.  相似文献   

16.
《Biophysical journal》2021,120(23):5395-5407
Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (−154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.  相似文献   

17.
Electron transfer activities and steady state reduction levels of Fe-S centers of NADH-Q oxidoreductase were measured in mitochondria, submitochondrial particles (ETPH), and complex I after treatment with various reagents. p-Chloromercuribenzenesulfonate destroyed the signal from center N-4 (gx = 1.88) in ETPH but not in mitochondria, showing that N-4 is accessible only from the matrix side of the inner membrane. N-Bromosuccinimide also destroyed the signal from N-4 but without inhibiting rotenone-sensitive electron transfer to quinone, suggesting a branched pathway for electron transfer. Diethylpyrocarbonate caused oxidation of N-3 and N-4 in the steady state without changing N-1, suggesting N-1 is before N-3 and N-4. Difluorodinitrobenzene and dicyclohexylcarbodiimide inhibited oxidation of all Fe-S centers and tetranitromethane inhibited reduction of all Fe-S centers. Titrations of the rate of superoxide (O2-) generation in rotenone-treated submitochondrial particles were similar with the ratio [NADH]/[NAD] and that of 3-acetyl pyridine adenine nucleotide in spite of different midpoint potentials of the two couples. On reaction with inhibitors the inhibition of O2- formation was similar to that of ferricyanide reductase rather than quinone reductase. The rate of O2- formation during ATP-driven reverse electron transfer was 16% of the rate observed with NADH. The presence of NAD increased the rate to 83%. The results suggest that bound, reduced nucleotide, probably E-NAD., is the main source of O2- in NADH dehydrogenase. The effect of ATP on the reduction levels of Fe-S centers in well-coupled ETPH was measured by equilibrating with either NADH/NAD or succinate/fumarate redox couples. With NADH/NAD none of the Fe-S centers showed ATP induced changes, but with succinate/fumarate all centers showed ATP-driven reduction with or without NAD present. The effect on N-2 was smaller than that on N-1, N-3, and N-4. These observations indicate that the major coupling interaction is between N-2 and the low potential centers, N-1, N-3, and N-4. Possible schemes of coupling in this segment are discussed.  相似文献   

18.
The sulfide-dependent reduction of exogenous ubiquinone by membranes of the hyperthermophilic chemotrophic bacterium Aquifex aeolicus (VF5), the sulfide-dependent consumption of oxygen and the reduction of cytochromes by sulfide in membranes were studied. Sulfide reduced decyl-ubiquinone with a maximal rate of up to 3.5 micromol (mg protein)(-1) min(-1) at 20 degrees C. Rates of 220 nmol (mg protein)(-1) min(-1)] for the sulfide-dependent consumption of oxygen and 480 nmol (mg protein)(-1) min(-1) for the oxidation of sulfide at 20 C were estimated. The reactions were sensitive towards 2-n-nonyl-4-hydroxyquinoline-N-oxide, but insensitive towards cyanide. Both reduction of decyl-ubiquinone and consumption of oxygen by sulfide rapidly increased with increasing temperature. For the sulfide-dependent respiratory activity, a sulfide-to-oxygen ratio of 2.3+/-0.2 was measured. This indicates that sulfide was oxidized to the level of zero-valent sulfur. Reduction of cytochromes by sulfide was monitored with an LED-array spectrophotometer. Reduction of cytochrome b was stimulated by 2-n-nonyl-4-hydroxyquinoline-N-oxide in the presence of excess sulfide under oxic conditions. This "oxidant-induced reduction" of cytochrome b suggests that electron transport from sulfide to oxygen in A. aeolicus employs the cytochrome bc complex via the quinone pool. Comparison of the amino acid sequence with the sequence of the sulfide:quinone oxidoreductase from Rhodobacter capsulatus and of the flavocytochrome c from Allochromatium vinosum revealed that the sulfide:quinone oxidoreductase from A. aeolicus belongs to the glutathione reductase family of flavoproteins.  相似文献   

19.
The coupling of the quinoprotein glucose dehydrogenase to the electron transport chain has been investigated in Acinetobacter calcoaceticus. No evidence was obtained to support a previous suggestion that the soluble form of the dehydrogenase and the soluble cytochrome b associated with it are involved in the oxidation of glucose. Analysis of cytochrome content, and of reduction of cytochromes in membranes by substrates, and of sensitivity to cyanide indicated that glucose, succinate and NADH are all oxidized by way of the same b-type cytochrome(s) and cytochrome oxidases (cytochrome o and cytochrome d). Mixed inhibition studies [with KCN and hydroxyquinoline N-oxide (HQNO)] showed that the b-type cytochrome(s) formed a binary complex with the o-type oxidase and that there was thus no communication between the electron transport chains at the cytochrome level. Measurements of the reduction of ubiquinone-9 by glucose and NADH, and inhibitor studies using HQNO, indicated that the ubiquinone mediates electron transport from both the glucose and NADH dehydrogenases. In some conditions the quinone pool facilitated communication between the 'glucose oxidase' and 'NADH oxidase' electron transport chains, but in normal conditions these chains were kinetically distinct.  相似文献   

20.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号