首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural genomics (SG) initiatives are expanding the universe of protein fold space by rapidly determining structures of proteins that were intentionally selected on the basis of low sequence similarity to proteins of known structure. Often these proteins have no associated biochemical or cellular functions. The SG success has resulted in an accelerated deposition of novel structures. In some cases the structural bioinformatics analysis applied to these novel structures has provided specific functional assignment. However, this approach has also uncovered limitations in the functional analysis of uncharacterized proteins using traditional sequence and backbone structure methodologies. A novel method, named pvSOAR (pocket and void Surface of Amino Acid Residues), of comparing the protein surfaces of geometrically defined pockets and voids was developed. pvSOAR was able to detect previously unrecognized and novel functional relationships between surface features of proteins. In this study, pvSOAR is applied to several structural genomics proteins. We examined the surfaces of YecM, BioH, and RpiB from Escherichia coli as well as the CBS domains from inosine-5'-monosphate dehydrogenase from Streptococcus pyogenes, conserved hypothetical protein Ta549 from Thermoplasm acidophilum, and CBS domain protein mt1622 from Methanobacterium thermoautotrophicum with the goal to infer information about their biochemical function.  相似文献   

2.
Assigning function to structures is an important aspect of structural genomics projects, since they frequently provide structures for uncharacterized proteins. Similarities uncovered by structure alignment can suggest a similar function, even in the absence of sequence similarity. For proteins adopting novel folds or those with many functions, this strategy can fail, but functional clues can still come from comparison of local functional sites involving a few key residues. Here we assess the general applicability of functional site comparison through the study of 157 proteins solved by structural genomics initiatives. For 17, the method bolsters confidence in predictions made based on overall fold similarity. For another 12 with new folds, it suggests functions, including a putative phosphotyrosine binding site in the Archaeal protein Mth1187 and an active site for a ribose isomerase. The approach is applied weekly to all new structures, providing a resource for those interested in using structure to infer function.  相似文献   

3.
About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity, and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomic tools such as mass spectrometry and 2D gels, immobilized-metal affinity chromatography, bioinformatic sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins.  相似文献   

4.
Genome-wide high-throughput screens in functional genomics   总被引:5,自引:0,他引:5  
The availability of complete genome sequences from many organisms has yielded the ability to perform high-throughput, genome-wide screens of gene function. Within the past year, rapid advances have been made towards this goal in many major model systems, including yeast, worms, flies, and mammals. Yeast genome-wide screens have taken advantage of libraries of deletion strains, but RNA-interference has been used in other organisms to knockdown gene function. Examples of recent large-scale functional genetic screens include drug-target identification in yeast, regulators of fat accumulation in worms, growth and viability in flies, and proteasome-mediated degradation in mammalian cells. Within the next five years, such screens are likely to lead to annotation of function of most genes across multiple organisms. Integration of such data with other genomic approaches will extend our understanding of cellular networks.  相似文献   

5.
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.  相似文献   

6.
Many of the gene products of completely sequenced organisms are 'hypothetical' - they cannot be related to any previously characterized proteins - and so are of completely unknown function. Structural studies provide one means of obtaining functional information in these cases. A 'structural genomics' project has been initiated aimed at determining the structures of 50 hypothetical proteins from Haemophilus influenzae to gain an understanding of their function. Each stage of the project - target selection, protein production, crystallization, structure determination, and structure analysis - makes use of recent advances to streamline procedures. Early results from this and similar projects are encouraging in that some level of functional understanding can be deduced from experimentally solved structures.  相似文献   

7.
8.
Metalloproteomics includes approaches that address the expression of metalloproteins and their changes in biological time and space. Metalloproteomes are investigated by a combination of approaches. Experimental approaches include structural genomics, which provides insights into the architecture of metal-binding sites in metalloproteins and establishes ligand signatures from the types and spacings of the metal ligands in the protein sequence. Theoretical approaches employ these ligand signatures as templates for homology searches in sequence databases. In this way, the number of metalloproteins in the iron, copper, and zinc metalloproteomes in various phyla of life has been estimated. Yet, manganese metalloproteomes remain poorly defined. Metals have catalytic and structural functions in proteins. However, additional functions have evolved. Proteins that control metal homeostasis and proteins that are metal-regulated bind metal ions transiently and are generally not accounted for in estimates from bioinformatics. Thus, metalloproteomes are dynamic and likely to be larger than present estimates suggest. This account discusses the assignment of transition metals in metalloproteins and the ensuing issues facing analytical chemists and structural and computational biologists. Biological and chemical selectivities render metal selection by metalloproteins either more stringent or less stringent depending on the metal homeostatic system of the organism, the subcellular location of the protein, and environmental factors. Failure to recognize the principles of metal utilization has led to assigning the wrong metal in metalloproteins and has missed some of the regulatory functions of transition metal ions.  相似文献   

9.
10.
A new high-throughput RNA-silencing system has been developed for use in the rice blast fungus Magnaporthe oryzae , allowing rapid generation of transformants in which individual genes have been silenced. Development of this system will allow large-scale functional analysis of genes in the fungus to define the cellular processes required for plant infection and disease symptoms. Functional analysis of 37 genes predicted to be involved in calcium signalling was carried out by RNA silencing to validate the new strategy and has provided new insight into the role of calcium-mediated signal transduction in plant pathogenic fungi.  相似文献   

11.
《TARGETS》2003,2(4):138-146
The process of deriving accurate annotations for genes in newly sequenced genomes has up to now been based largely on projection of results in one organism to genes in other organisms based on sequence similarity. We are now entering a period in which metabolic reconstructions will play an increasingly significant role. These reconstructions will support a gradual refinement of estimates of function, leading to more consistent and precise understanding. They will become key components in establishing which functional roles have not yet been connected to genes and which aspects of an organism's physiology can be understood in terms of existing functional assignments. As each refinement is made, we incrementally approach the goal of establishing a qualitative understanding of an organism in terms of its inventory of genes.  相似文献   

12.
High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their functional consequence on genes, inferring cytogenetic bands, reporting functional importance scores, finding variants in conserved regions, or identifying variants reported in the 1000 Genomes Project and dbSNP. ANNOVAR can utilize annotation databases from the UCSC Genome Browser or any annotation data set conforming to Generic Feature Format version 3 (GFF3). We also illustrate a ‘variants reduction’ protocol on 4.7 million SNVs and indels from a human genome, including two causal mutations for Miller syndrome, a rare recessive disease. Through a stepwise procedure, we excluded variants that are unlikely to be causal, and identified 20 candidate genes including the causal gene. Using a desktop computer, ANNOVAR requires ∼4 min to perform gene-based annotation and ∼15 min to perform variants reduction on 4.7 million variants, making it practical to handle hundreds of human genomes in a day. ANNOVAR is freely available at http://www.openbioinformatics.org/annovar/.  相似文献   

13.
Integration of structural and functional genomics   总被引:3,自引:0,他引:3  
This paper introduces a special issue of Animal Genetics , which is devoted to the recent symposium held at Iowa State University entitled 'Integration of Structural and Functional Genomics'. We describe issues and needs that confront the animal genomics community, and describe how this symposium was structured to address these issues by improving communication and collaboration across species and disciplines. The session topics and oral presentations are briefly described for all invited speakers.  相似文献   

14.
Irving JA  Whisstock JC  Lesk AM 《Proteins》2001,42(3):378-382
Structural genomics-the systematic solution of structures of the proteins of an organism-will increasingly often produce molecules of unknown function with no close relative of known function. Prediction of protein function from structure has thereby become a challenging problem of computational molecular biology. The strong conservation of active site conformations in homologous proteins suggests a method for identifying them. This depends on the relationship between size and goodness-of-fit of aligned substructures in homologous proteins. For all pairs of proteins studied, the root-mean-square deviation (RMSD) as a function of the number of residues aligned varies exponentially for large common substructures and linearly for small common substructures. The exponent of the dependence at large common substructures is well correlated with the RMSD of the core as originally calculated by Chothia and Lesk (EMBO J 1986;5:823-826), affording the possibility of reconciling different structural alignment procedures. In the region of small common substructures, reduced aligned subsets define active sites and can be used to suggest the locations of active sites in homologous proteins.  相似文献   

15.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   

16.
Oude Elferink R 《Trends in biotechnology》2003,21(4):146-7; discussion 147-8
In a recent paper by Michiels et al. an important step was made towards genuine high throughput functional genomics. The authors produced an arrayed adenoviral library containing >120000 cDNAs isolated from human placenta. This library can be used for arrayed transduction of cell lines in phenotypic assays and to screen for genes involved in the induction of any phenotype for which a robust high-throughput assay can be designed.  相似文献   

17.

Background

Development of novel antibacterial drugs is both an urgent healthcare necessity and a partially neglected field. The last decades have seen a substantial decrease in the discovery of novel antibiotics, which combined with the recent thrive of multi-drug-resistant pathogens have generated a scenario of general concern. The procedures involved in the discovery and development of novel antibiotics are economically challenging, time consuming and lack any warranty of success. Furthermore, the return-on-investment for an antibacterial drug is usually marginal when compared to other therapeutics, which in part explains the decrease of private investment.

Results

In this work we present antibacTR, a computational pipeline designed to aid researchers in the selection of potential drug targets, one of the initial steps in antibacterial-drug discovery. The approach was designed and implemented as part of two publicly funded initiatives aimed at discovering novel antibacterial targets, mechanisms and drugs for a priority list of Gram-negative pathogens: Acinetobacter baumannii, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. However, at present this list has been extended to cover a total of 74 fully sequenced Gram-negative pathogens. antibacTR is based on sequence comparisons and queries to multiple databases (e.g. gene essentiality, virulence factors) to rank proteins according to their potential as antibacterial targets. The dynamic ranking of potential drug targets can easily be executed, customized and accessed by the user through a web interface which also integrates computational analyses performed in-house and visualizable on-site. These include three-dimensional modeling of protein structures and prediction of active sites among other functionally relevant ligand-binding sites.

Conclusions

Given its versatility and ease-of-use at integrating both experimental annotation and computational analyses, antibacTR may effectively assist microbiologists, medicinal-chemists and other researchers working in the field of antibacterial drug-discovery. The public web-interface for antibacTR is available at ‘http://bioinf.uab.cat/antibactr’.  相似文献   

18.
We demonstrate that fluorescent proteins can be used as visual selection markers for the transformation of Arabidopsis thaliana by the floral dip method. Seed-specific expression of green fluorescent protein (GFP) variants, as well as DsRed, permits the identification of mature transformed seeds in a large background of untransformed seeds by fluorescence microscopy. In planta visualization of transformed seeds in siliques shows that susceptibility to floral dip transformation is limited to a small, defined window in flower development. In the competent stage, the random transformation of up to 25% of the seeds within a single silique may occur. The use of fluorescent proteins with different spectral characteristics allows a rapid identification and genetic analysis of seeds that have received multiple genes-of-interest in co-transformation experiments. The data reveal that co-transformation does not occur at random, since the co-transformed genes are integrated at a single genetic locus in approximately 70% of the cases. This genetic linkage of the co-transformed genes greatly simplifies metabolic pathway engineering by reverse genetics in Arabidopsis. Additional advantages of using visual selection instead of antibiotic resistance include a rapid identification of the effect of the T-DNA insertion or the transgene on seed development and/or germination. This technology, of tagging and identifying transformed seeds by fluorescence provides a novel high-throughput screening system with many potential applications in plant biotechnology.  相似文献   

19.
Structural genomics is a broad initiative of various centers aiming to provide complete coverage of protein structure space. Because it is not feasible to experimentally determine the structures of all proteins, it is generally agreed that the only viable strategy to achieve such coverage is to carefully select specific proteins (targets), determine their structure experimentally, and then use comparative modeling techniques to model the rest. Here we suggest that structural genomics centers refine the structure-driven approach in target selection by adopting function-based criteria. We suggest targeting functionally divergent superfamilies within a given structural fold so that each function receives a structural characterization. We have developed a method to do so, and an itemized survey of several functionally rich folds shows that they are only partially functionally characterized. We call upon structural genomics centers to consider this approach and upon computational biologists to further develop function-based targeting methods.  相似文献   

20.
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号