首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larvae of the navel orangeworm (NOW), Amyelois transitella (Walker), a major pest of almonds and pistachios, and the codling moth (CM), Cydia pomonella (L.), the principal pest of walnuts and pome fruits, are commonly found in tree nut kernels that can be contaminated with aflatoxin, a potent carcinogen. The ability of larvae of these insects to metabolize aflatoxin B1 (AFB1) was examined. A field strain of NOW produced three AFB1 biotransformation products, chiefly aflatoxicol (AFL), and minor amounts of aflatoxin B2a (AFB2a) and aflatoxin M1 (AFM1). With AFL as a substrate, NOW larvae produced AFB1 and aflatoxicol M1 (AFLM1). A lab strain of CM larvae produced no detectable levels of AFB1 biotransformation products in comparison to a field strain which produced trace amounts of only AFL. Neither NOW nor CM produced AFB1-8,9-epoxide (AFBO), the principal carcinogenic metabolite of AFB1. In comparison, metabolism of AFB1 by chicken liver yielded mainly AFL, whereas mouse liver produced mostly AFM1 at a rate eightfold greater than AFL. Mouse liver also produced AFBO. The relatively high production of AFL by NOW compared to CM may reflect an adaptation to detoxify AFB1. NOW larvae frequently inhabit environments highly contaminated with fungi and, hence, aflatoxin. Only low amounts, if any, of this mycotoxin occur in the chief CM hosts, walnuts, and pome fruits. Characterizations of enzymes and co-factors involved in biotransformation of AFB1 are discussed.  相似文献   

2.
A comparison between [14C]aflatoxin B1 (AFB1) and [14C]aflatoxin G1 (AFG1) binding to rat liver and kidney cellular macromolecules has shown AFG1-DNA and-ribosomal RNA binding to be lower in both organs. For both mycotoxins more was bound to nucleic acids than to protein. Two hours after intraperitoneal injection (60 microgram/100 g) of [14C] AFB1, 40 ng, 151 ng/mg. Loss of radioactivity bound to liver DNA for both [14C]AFB1 and protein respectively and for [14C]AFG1 the respective figures were 10, 7 and 1 ng/mg. Loss of liver bound radioactivity to DNA for both [14C]AFG1 and [14C]AFG1 appeared to be biphasic indicating that an enzymic DNA repair process may be operating. In vitro binding studies also showed less AFG1 was bound to exogenous DNA after microsomal activation than AFB1. This difference was not a result of differences in the chemical reactivity of the "ultimate" electrophilic species, the respective expoxides, since chemical activation studies using 3-chloroperbenzoic acid showed similar amounts of AFG1 and AFB1 to be converted to the epoxides and to bind to DNA. Studies on the distribution coefficients of the two mycotoxins showed AFB1 to be more lipophilic than AFG1 and this may be an important factor in determining the weaker carcinogenicity of the latter compound. Characterisation of the major AFG1-DNA adduct formed in vitro, in vivo and after peracid oxidation showed it to have the structure trans-9,10-dihydro-9-(7-guanyl)-10-hydroxy-aflatoxin G1. This adduct is similar to that obtained from AFB1 by activation in vivo, in vitro and after peracid oxidation.  相似文献   

3.
Y Ito  S Ohnishi  K Fujie 《Mutation research》1989,222(3):253-261
Aflatoxin B1 (AFB1)-induced chromosome aberrations (CA) in rat bone marrow cells consisted mainly of gaps and breaks. Cells with exchanges and multiple CA were observed infrequently. The incidence of aberrant cells and the number of aberrations per cell were at their maximum levels 18 h after the AFB1 injection. They were dependent on the administered dose of AFB1. Rats given the hot water extract from green tea (GTE) 24 h before they were injected with AFB1 displayed considerably suppressed AFB1-induced CA in their bone marrow cells. Rats administered GTE 2 h before or after the AFB1 injection showed no suppressive effect. The suppressive effect of GTE on AFB1-induced CA paralleled the dose of GTE when given in the range between 0.1 and 2 g/kg body weight; higher doses produced no additional suppression. On the other hand, rats given the hot water extract from black tea or coffee 24 or 2 h before the AFB1 injection showed no suppressive effect. The administration of caffeine 24 h before the AFB1 injection suppressed AFB1-induced CA as well as the administration of caffeine 2 h before the AFB1 injection. However, the suppression rate with 2 h was larger than with 24 h. The suppression by ellagic acid was found only when it was given 2 h before the AFB1 injection. The administration of ascorbic acid or tannic acid did not significantly suppress AFB1-induced CA. The tannin mixture extracted from green tea (GTTM) showed a similar tendency to GTE, that is, the administration of GTTM 24 h before the AFB1 injection potently suppressed AFB1-induced CA, while the administration of GTTM 2 h before the AFB1 injection did not suppress them significantly. The suppressive effect of GTTM on AFB1-induced CA paralleled the dose of GTTM when given in the range of 75-450 mg/kg body weight.  相似文献   

4.
Oldenlandia diffusa (OD) and Scutellaria barbata (SB) have been used in traditional Chinese medicine for treating liver, lung and rectal tumors while Astragalus membranaceus (AM) and Ligustrum lucidum (LL) are often used as an adjunct in cancer therapy. In this study, we determined the effects of aqueous extracts of these four herbs on aflatoxin B1 (AFB1)-induced mutagenesis using Salmonella typhimurium TA100 as the bacterial tester strain and rat liver 9000 x g supernatant as the activation system. The effects of these herbs on [3H]AFB1 binding to calf-thymus DNA were assessed. Organosoluble and water-soluble metabolites of AFB1 were extracted and analyzed by high-performance liquid chromatography (HPLC). Mutagenesis assays revealed that all of these herbs produced a concentration-dependent inhibition of histidine-independent revertant (His+) colonies induced by AFB1. At a concentration of 1.5 mg/plate, SB and OD in combination exhibited an additive effect. The trend of inhibition of these four herbs on AFB1-induced mutagenesis was: SB greater than LL greater than AM. LL, OD and SB significantly inhibited AFB1 binding to DNA, reduced AFB1-DNA adduct formation, and also significantly decreased the formation of organosoluble metabolites of AFB1. Our data suggest that these Chinese medicinal herbs possess cancer chemopreventive properties.  相似文献   

5.
Effect of desipramine on dopamine receptor binding in vivo   总被引:2,自引:0,他引:2  
T Suhara  O Inoue  K Kobayasi 《Life sciences》1990,47(23):2119-2126
Effect of desipramine (given i.p. 30 min prior to the tracer injection) on the in vivo binding of 3H-SCH23390 and 3H-N-methylspiperone (3H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of 3H-SCH23390 or 45 min after injection of 3H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.  相似文献   

6.
Metabolism of aflatoxin B1 (AFB1) by subcellular preparations of Aspergillus flavus is least understood. The results reported here have demonstrated for the first time the epoxidation of AFB1 and subsequent conjugation with glutathione (GSH). Microsomes prepared from toxigenic mycelia catalysed [3H]AFB1 to calf thymus DNA to a greater extent (approximately 2-fold) as compared to that of non-toxigenic. The binding of [3H]AFB1 to exogenous and A. flavus nuclear DNA catalyzed by A. flavus microsomes was found to be comparable with that of mammalian extrahepatic tissue such as lung. Addition of phenobarbitone to the growing cultures resulted in 1.5-fold increase in [3H]AFB1-DNA binding mediated by microsomes prepared from either of the two strains. Tolnaftate, an inhibitor of aflatoxin synthesis enhanced the epoxidation rate in a dose-related manner. The binding of [3H]AFB1 to DNA catalyzed by A. flavus microsomes was significantly reduced (50% of control) upon addition of hamster liver cytosol, thereby substantiating the formation of the carcinogen adduct with DNA as reported in mammalian tissues. The metabolite formed by subcellular preparation of A. flavus was found to be AFB1-GSH having Rf value (6.5) similar to that obtained for mammalian liver preparations.  相似文献   

7.
S Y Li  J K Lin 《Mutation research》1990,242(3):219-224
Rats were treated intraperitoneally with different concentrations of aflatoxin B1 (AFB1) or N-nitrosophenacetin (NP). Blood was sequentially drawn by venous puncture at 6, 24, 72, 120 h and 14 days after a single injection of AFB1 or NP. After AFB1 the frequency of SCEs and chromosome aberrations increased progressively and reached a maximum level after 24 h and then decreased with time. By 2 weeks post treatment, the SCE and chromosome aberration values were within the control range. A small but significant SCE induction was observed when rats were treated with NP, but no chromosome breakage was induced even at the highest dose (20 mg/kg). We suggest that the elimination of DNA damage by repair mechanisms and lymphocyte turnover is responsible for the reduction of SCEs and chromosome aberrations with time. This assay seems promising for sequential monitoring of cytogenetic damage in rat lymphocytes following in vivo exposure to genotoxicants.  相似文献   

8.
The interaction of a potent carcinogen, aflatoxin B(1) (AFB(1)), with a probiotic strain of lactic acid bacteria, Lactobacillus rhamnosus strain GG (GG), has been investigated. The binding of AFB(1) to GG in the late exponential-early stationary phase was studied for viable, heat-killed and acid-killed bacteria. In general, viable, heat-killed and acid-killed GG responded in a similar manner. The effects of pronase E, lipase and m-periodate on AFB(1) binding and release were consistent with AFB(1) binding predominantly to carbohydrate components of the bacteria. The effect of urea suggested hydrophobic interactions play a major role in binding. Increasing concentration (0.01-1 M) of NaCl or CaCl(2) had minor effects on AFB(1) binding suggesting some involvement of electrostatic interactions. An increase in pH from 2.5 to 8.5 had no effect on AFB(1) binding but decreased binding of AFB(2a), possibly due to hydrogen bonding interactions.  相似文献   

9.
Equilibrium binding of aflatoxin B1 (AFB1) to the oligodeoxynucleotide d(ATGCAT)2 was examined by using 1H NMR. AFB1 binds to double-stranded d(ATGCAT)2 with an apparent binding constant of 3.7 x 10(3) M-1. The equilibrium is rapid on the NMR time scale; the observed 1H NMR spectrum represents the population-weighted average of the chemical shifts arising from the free and bound states of the oligodeoxynucleotide and the AFB1. The spectrum of d(ATGCAT)2 exhibits exchange broadening in the presence of AFB1, manifested as decreases in apparent T2 relaxation times for the d(ATGCAT)2 base protons. Upon binding to d(ATGCAT)2, the AFB1 signals are shifted upfield, indicative of increased shielding. The adenine H2 protons are also shifted upfield in the presence of the carcinogen. Small changes in chemical shift are observed for other d(ATGCAT)2 protons. A substantial decrease in the nonselective T1 relaxation time is observed for the adenine H2 protons in the presence of AFB1. Competition binding experiments in which the competing ligands actinomycin D, ethidium bromide, and spermidine were individually added to an AFB1-d(ATGCAT)2 equilibrium mixture showed that addition of 1 equiv of actinomycin D or 4 equiv of ethidium bromide was sufficient to displace bound AFB1 from d(ATGCAT)2. In contrast, the addition of spermidine did not result in the displacement of bound AFB1 molecules and may have slightly enhanced binding, presumably due to stabilization of the DNA duplex. 1H NOESY experiments confirmed that the overall conformation for the d(ATGCAT)2 duplex was right-handed both in the absence and in the presence of AFB1. Equilibrium binding of AFB1 to d(ATGCAT)2 is greatly diminished at higher temperatures at which the oligodeoxynucleotide is single-stranded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The formation of an aflatoxin B1-reduced glutathione (AFB1-GSH) conjugate in in vitro systems has been examined. AFB1 was activated by a chicken liver microsomal system and factors affecting the subsequent conversion to the AFB1-dihydrodiol or conjugation with GSH were investigated by HPLC. A requirement for glutathione S-transferase in the formation of the AFB1-GSH conjugate was observed. Studies using CM-cellulose columns showed the fractions containing glutathione S-transferase B activity were the most effective in catalysing the formation of the AFB1-GSH conjugate. The possibility of changes in the level of AFB1-GSH conjugate production in the liver during carcinogenesis by AFB1 has been examined. It has been found, using freshly isolated rat hepatocytes, that low level feeding with AFB1 in vivo increases the production of the conjugate in vitro. Further increases in the production of the conjugate by hepatocytes in vitro, accompanying increases in the preneoplastic lesions, are achieved by partially hepatectomising the AFB1-fed animals. Partial hepatectomy of control-fed animals yielded no similar changes. The AFB1/partial hepatectomy treatment resulted in increased levels of all the glutathione S-transferase activities fractionated on CM-cellulose. Macromolecular binding of AFB1 and/or of its metabolites was detected in the fractions containing glutathione S-transferase activity, but there was no evidence for a greater binding in the glutathione S-transferase B/ligandin containing fractions. Furthermore fractionation on Sephadex G-75 indicated a predominance of binding of AFB1 to proteins of a higher molecular weight than the glutathione S-transferases, although some binding in the molecular weight range of the latter was observed.  相似文献   

11.
J J Pestka  Y K Li    F S Chu 《Applied microbiology》1982,44(5):1159-1165
Aflatoxin B2a (AFB2a) antiserum has been previously used in an enzyme-linked immunosorbent assay (ELISA) for the quantitation of AFB1 and AFB2a. The present investigation examined the reactivity of the antiserum toward those adducts and metabolites of AFB1 believed to play a major role in aflatoxicosis and carcinogenesis. 2,3-Dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (AFB1-N7-Gua), the putative 2,3-(N5-formyl-2-2', 5',6'-triamino-4-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (AFB1-FAPyr), 2,3-dihydro-2,3-dihydroxyaflatoxin B1 (AFB1-diol), AFB1-N7-Gua-modified DNA, and AFB1-FAPyr-modified DNA were prepared by in vitro incubation or chemical methods and subjected to competitive AFB2a ELISA. The antiserum showed significant reactivity with all five compounds, indicating that it had a high degree of specificity for both the cyclopentenone and the methoxy group of the parent aflatoxin molecule. Sensitivity for AFB-N7-Gua-modified DNA, AFB1-FAPyr-modified DNA, and AFB1-diol by the ELISA method was 0.1 pmol per assay. To test the applicability of immunological detection of covalent binding of AFB1 to DNA, the ELISA was compared with a conventional radioisotopic assay in two in vitro studies. The results showed that estimates of the kinetics and substrate dependence of covalent binding to calf thymus DNA in rat microsomal incubation mixtures by both methods were comparable. The broad specificity AFB2a antibody might be of considerable value in the detection of AFB1 macromolecular adducts and related metabolites in epidemiological investigations or in the diagnosis of aflatoxicosis.  相似文献   

12.
Aflatoxins (AFs) produce singlet oxygen upon their exposure to UV (365-nm) light. Singlet oxygen in turn activates them to mutagens and DNA-binding species. DNA binding and mutagenesis by AFs were enhanced in D2O as compared to reactions in H2O, and a singlet oxygen scavenger inhibited mutagenesis. DNA photobinding of 3H-AFB1 increased in the presence of unlabeled AFB2, and the addition of AFB2 enhanced mutagenesis by AFB1 in a synergistic manner. These results are compatible with the notion that singlet oxygen, formed by one aflatoxin molecule, can readily activate another aflatoxin molecule. This may bear an environmental implication in that the weakly carcinogenic AFB2, which is often produced in nature together with AFB1, may be important in enhancing the activation of AFB1 by sunlight.  相似文献   

13.
The covalent binding of the activated forms of several aflatoxins to N-7 of guanine residues on purified DNA has been studied. The aflatoxins include aflatoxin B1 (AFB1) and two human metabolites, aflatoxicol and aflatoxin M1, along with aflatoxicol M1, a rabbit and trout metabolite. DNA binding studies using tritiated [3H]aflatoxins indicate that equimolar solutions of each aflatoxin upon activation with chloroperoxybenzoic acid readily react to produce covalently bound adducts. These reactions produce alkali-labile sites which can be identified using a simple variation of the Maxam-Gilbert sequencing procedure. Two DNA fragments were exposed to each aflatoxin, and the reaction intensities at 33 guanine residues were determined. As much as 10-fold variation in reaction intensities was observed for various guanyl sites. Data indicate that none of the aflatoxins had identical reaction profiles, although AFB1 and aflatoxicol M1 were similar, as were aflatoxicol and aflatoxin M1. Hence, the frequency with which the various aflatoxin epoxides might damage specific sites critical for tumor initiation in vivo would not be predictable from total covalent binding indices. The frequency of occurrence of modifications at particular sites for AFB1 was also compared with the empirical "rules" established for AFB1 by Misra et al. (Misra, R. P., Muench, K. F., and Humayun, M. Z. (1983) Biochemistry 22, 3351-3359). Identical sites within fragments were compared for each aflatoxin, and the data showed that the attacking frequency for some such sites varied significantly. These results indicate that binding intensity rules based on nearest neighbor nucleotides do not reliably predict guanyl-AFB1 binding frequencies.  相似文献   

14.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

15.
Administration of the phenolic antioxidant 2(3)-t-butyl-4-hydroxyanisole (BHA) to mice resulted in a 2-3-fold increase in the liver microsome catalyzed irreversible binding of aflatoxin B1 (AFB1) to calf thymus DNA and up to a 5-fold increase in the ability to induce mutations in Salmonella typhimurium TA98. Maximum induction of AFB1 binding to DNA occurred after 2 days of BHA administration whereas cytosolic glutathione S-transferase was maximally induced (6-fold) only after 10 days of BHA feeding. The induction of a new cytochrome P-450 species was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and an enhanced sensitivity to inhibition by metyrapone and alpha-naphthoflavone. Addition of control cytosol (containing glutathione S-transferase) + glutathione to control microsomes decreased AFB1 binding to DNA by 26%. However, replacement of control cytosol by BHA cytosol which contained 6 times more glutathione S-transferase only marginally enhanced the inhibition to 38%. These data suggest that BHA may exert its effect in the liver primarily through an alteration of the cytochrome P-450 dependent activation process although an increase in the conjugation of reactive metabolite may play a contributory role.  相似文献   

16.
Aflatoxin B1 (AFB1) is a potent hepatocarcinogen. We have recently detected [via electron spin resonance (ESR) spectroscopy] free radicals in vivo in rat bile following AFB1 metabolism using the spin trapping [alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN)] technique. The aim of the present study was to identify the trapped free radical intermediates from the in vivo hepatic metabolism of AFB1. Rats were treated simultaneously with AFB1 (3 mg/kg i.p.) and the spin trapping agent 4-POBN (1 g/kg i.p.), and bile was collected over a period of 1 h at 20 min intervals. On-line high performance liquid chromatography (HPLC) coupled to ESR was used to identify an arachidonic acid-derived radical adduct of 4-POBN in rat bile, and a methyl adduct of 4-POBN from the reaction of hydroxyl radicals with carbon-13-labeled dimethyl sulfoxide ((13)C-DMSO). The effect of metabolic inhibitors, such as desferoxamine mesylate (DFO), an iron chelator, 2-dimethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF) 525A, a cytochrome P-450 inhibitor, and gadolinium chloride (GdCl(3)), a Kupffer cell inactivator, on in vivo aflatoxin-induced free radical formation were also studied. It was found that there was a significant decrease in radical formation as a result of DFO, SKF525A and GdCl(3) inhibition. Trapped 4-POBN radical adducts were also detected in rat bile following the in vivo metabolism of aflatoxin-M1, one of the hydroxylated metabolites of AFB1.  相似文献   

17.
Studies were conducted to assess the possible protective action of 16,16-dimethyl prostaglandin E2 (DMPG) against acute aflatoxin B1 (AFB1) induced hepatic injury in the rat. Evaluation of liver damage by histopathologic techniques and clinical chemistry indicated that hepatic necrosis was ameliorated by treatment with DMPG even though binding of radiolabeled (3H)-AFB1 to hepatic DNA was unaffected by this prostaglandin. However, DMPG did not protect rats against AFB1-induced mortality. These data suggest that hepatic protection by DMPG was due to mechanisms other than an interference with the activation or hepatic binding of AFB1.  相似文献   

18.
A specific antibody for 2,3-dihydro-2,3-dihydroxyaflatoxin B1 (AFB1-diol) was prepared, and its reactivity was characterized for the major aflatoxin (AF) B1 (AFB1) metabolites. Reductive alkylation was used to conjugate AFB1-diol to ethylenediamine-modified bovine serum albumin (EDA-BSA) and horseradish peroxidase for use as an immunogen and an enzyme-linked immunosorbent assay (ELISA) marker, respectively. High reactant ratios, 1:5 and 1:10, for AFB1-diol-EDA-BSA (wt/wt) resulted in precipitated conjugates which were poorly immunogenic. However, a soluble conjugate obtained by using a 1:25 ratio of AFB1-diol to EDA-BSA could be used for obtaining high-titer AFB1-diol rabbit antibody within 10 weeks. Competitive ELISAs revealed that the AFB1-diol antibody detected as little as 1 pmol of AFB1-diol per assay. Cross-reactivity of AFB1-diol antibody in the competitive ELISA with AF analogs was as follows: AFB1-diol, 100%; AFB1, 200%; AFM1, 130%; AFB2a, 100%; AFG1, 6%; AFG2, 4%; aflatoxicol, 20%; AFQ1, 2%; AFB1-modified DNA, 32%; and 2,3-dihydro-2-(N7-guanyl)-3-hydroxy AFB1, 0.6%. These data indicated that the cyclopentanone and methoxy moieties of the AF molecule were the primary epitopes for the AFB1-diol antibody. The AFB1-diol competitive ELISA was subject to substantial interference by human, rat, and mouse serum albumins but not by BSA, Tris, human immunoglobulin G, or lysozyme. By using a noncompetitive, indirect ELISA with an AFB1-modified DNA solid phase, a modification level of one AFB1 residue for 200,000 nucleotides could be determined.  相似文献   

19.
A specific antibody for 2,3-dihydro-2,3-dihydroxyaflatoxin B1 (AFB1-diol) was prepared, and its reactivity was characterized for the major aflatoxin (AF) B1 (AFB1) metabolites. Reductive alkylation was used to conjugate AFB1-diol to ethylenediamine-modified bovine serum albumin (EDA-BSA) and horseradish peroxidase for use as an immunogen and an enzyme-linked immunosorbent assay (ELISA) marker, respectively. High reactant ratios, 1:5 and 1:10, for AFB1-diol-EDA-BSA (wt/wt) resulted in precipitated conjugates which were poorly immunogenic. However, a soluble conjugate obtained by using a 1:25 ratio of AFB1-diol to EDA-BSA could be used for obtaining high-titer AFB1-diol rabbit antibody within 10 weeks. Competitive ELISAs revealed that the AFB1-diol antibody detected as little as 1 pmol of AFB1-diol per assay. Cross-reactivity of AFB1-diol antibody in the competitive ELISA with AF analogs was as follows: AFB1-diol, 100%; AFB1, 200%; AFM1, 130%; AFB2a, 100%; AFG1, 6%; AFG2, 4%; aflatoxicol, 20%; AFQ1, 2%; AFB1-modified DNA, 32%; and 2,3-dihydro-2-(N7-guanyl)-3-hydroxy AFB1, 0.6%. These data indicated that the cyclopentanone and methoxy moieties of the AF molecule were the primary epitopes for the AFB1-diol antibody. The AFB1-diol competitive ELISA was subject to substantial interference by human, rat, and mouse serum albumins but not by BSA, Tris, human immunoglobulin G, or lysozyme. By using a noncompetitive, indirect ELISA with an AFB1-modified DNA solid phase, a modification level of one AFB1 residue for 200,000 nucleotides could be determined.  相似文献   

20.
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and exacerbation of hepatic steatosis but their combined impacts and the potential mechanisms remain to be further elucidated. Here, we showed that exposure to AFB1 impaired mitochondrial dynamics and increased intracellular lipid droplets (LDs) in the liver of HBV‐transgenic mice in vivo and the hepatitis B virus X protein (HBx)‐expressing human hepatocytes both ex vivo and in vitro. HBx combined with AFB1 exposure also up‐regulated receptor interaction protein 1 (RIP1), receptor interaction protein 3 (RIP3) and activated mixed lineage kinase domain like protein (MLKL), providing evidence of necrosome formation in the hepatocytes. The shift of the mitochondrial dynamics towards imbalance of fission and fusion was rescued when MLKL was inhibited in the HBx and AFB1 co‐treated hepatocytes. Most importantly, based on siRNA or CRISPR/Cas9 system, we found that the combination of HBx and AFB1 exposure increased cyclooxygenase‐2 (COX‐2) to mediate up‐regulation of RIP3 and dynamin‐related protein 1 (Drp1), which in turn promoted location of RIP3‐MLKL necrosome on mitochondria, subsequently exacerbated steatosis in hepatocytes. Taken together, these findings advance the understanding of mechanism associated with HBx and AFB1‐induced hepatic necrosome formation, mitochondrial dysfunction and steatosis and make COX‐2 a good candidate for treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号