首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细小病毒B19 Oligo探针设计   总被引:1,自引:0,他引:1  
利用BLAST软件对细小病毒B19的序列进行序列比对,获得特异序列;利用生物学软件Oligo6.40设计特异性高、Tm值接近、长度均一的Oligo探针。结果获得了13条70bp的Oligo探针,用于芯片打印及细小病毒B19的检测。表明利用BLAST系统和生物学软件Oligo6.40设计细小病毒B19诊断芯片的探针是一种简便而有效的方法。  相似文献   

2.
Background: Diagnosis of acute and past infection with parvovirus B19 is based on detection of IgM and IgG antibodies.Objectives: To evaluate two commercial recombinant antigen-based enzyme immunoassay (EIA) test kits for detection of IgM and IgG antibodies to parvovirus B19 and to compare the commercial EIAs to in-house EIA test procedures.Study design: A panel of 121 sera was used to compare the three IgM EIAs. The panel included 84 sera submitted for parvovirus B19 testing and 37 sera that were IgM positive for other viral pathogens. The same serum panel plus an additional 14 sera submitted for B19 testing was used to compare the three IgG EIAs. The commercial EIAs were performed according to manufacturers' instructions. Using the in-house EIA test procedures as the reference, sensitivity and specificity for each of the commercial EIAs was determined.Results: The commercial B19 IgM EIAs showed agreements of 95.0 and 93.4% to the in-house IgM EIA. Compared to the in-house B19 IgM EIA, the commercial B19 IgM EIAs, were 97.4 and 97.5% sensitive, respectively. Specificities were 93.5 and 91.4%, respectively. Sensitivities for the commercial IgG EIAs, compared to in-house IgG EIA, were 88.0 and 85.2%, respectively, and specificities were 94.1 and 98.0%.Conclusion: We found that the commercial parvovirus B19 IgM and IgG EIAs are comparable to standard in-house EIAs and are suitable for testing for B19 antibodies in human sera.  相似文献   

3.
人微小病毒B19感染的研究进展   总被引:4,自引:0,他引:4  
近年来人微小病毒B19(human parvovirus B19)作为人类疾病的重要病原已愈来愈广泛受到重视。大量研究成果不但揭示了B19病毒的致病机理,Th-1介导的细胞免疫应答,而且发展了B19感染的诊断和B19污染血制品的筛查技术,并且为疫苗的研制奠定了基础。这里对人类B19病毒的病原学特征、致病机理、临床症状及实验室诊断方法和技术进行了较全面的综述。  相似文献   

4.
The human pathogenic parvovirus B19 cannot be grown in standard tissue culture but propagates in human bone marrow, where it is cytotoxic to erythroid progenitor cells. We now show that parvovirus B19 can replicate in cynomolgus bone marrow. Cynomolgus monkeys may be a suitable animal model for pathogenesis studies of parvovirus B19.  相似文献   

5.
Simian parvovirus is a recently discovered parvovirus that was first isolated from cynomolgus monkeys. It is similar to human B19 parvovirus in terms of virus genome, tropism for erythroid cells, and characteristic pathology in natural infections. Cynomolgus monkeys were infected with simian parvovirus to investigate their potential usefulness as an animal model of human B19 parvovirus. Six adult female cynomolgus monkeys were inoculated with purified simian parvovirus by the intravenous or intranasal route and monitored for evidence of clinical abnormalities; this included the preparation of complete hematological profiles. Viremia and simian parvovirus-specific antibody were determined in infected monkeys by dot blot and Western blot assays, respectively. Bone marrow was examined at necropsy 6, 10, or 15 days postinfection. All of the monkeys developed a smoldering, low-grade viremia that peaked approximately 10 to 12 days after inoculation. Peak viremia coincided with the appearance of specific antibody and was followed by sudden clearance of the virus and complete, but transient, absence of reticulocytes from the peripheral blood. Clinical signs were mild and involved mainly anorexia and slight weight loss. Infection was associated with a mild decrease in hemoglobin, hematocrit, and erythrocyte numbers. Bone marrow showed marked destruction of erythroid cells coincident with peak viremia. Our findings indicate that infection of healthy monkeys by simian parvovirus is self-limited and mild, with transient cessation of erythropoiesis. Our study has reproduced Koch's postulates and further shown that simian parvovirus infection of monkeys is almost identical to human B19 parvovirus infection of humans. Accordingly, this animal model may prove valuable in the study of the pathogenesis of B19 virus infection.  相似文献   

6.
目的调查人类细小病毒B19在武汉地区普通人群,尤其是育龄妇女中的感染状况。方法采集武汉地区2家医院的血液样本1700份,分为两组。以血清中提取的DNA为模板,进行巢式PCR扩增。结果第Ⅰ组(普通组,包括男性和女性)阳性检测率为4.50%,第Ⅱ组(妇女组)阳性检测率为8.33%。结论武汉地区育龄妇女的B19感染率高于普通人群,很有必要对孕妇进行诊断从而预防新生儿感染B19病毒。另外,由于巢式PCR具有灵敏、特异、简便等优点,适合于用来检测血液样本中的人细小病毒B19。  相似文献   

7.
The target cell specificity of the B19 parvovirus infection was examined by isolating highly enriched hematopoietic progenitor and stem cells from normal human bone marrow. The efficiency of the B19 parvovirus replication in enriched erythroid progenitor cells was approximately 100-fold greater than that in unseparated bone marrow cells. The more-primitive progenitor cells identical to or closely related to the human pluripotent hematopoietic stem cells, on the other hand, did not support viral replication. The B19 progeny virus produced by the enriched erythroid progenitor cells was infectious and strongly suppressed erythropoiesis in vitro. The susceptibility of both the more-primitive erythroid progenitors (burst-forming units-erythroid) and the more-mature erythroid progenitors (CFU-erythroid) to the cytolytic response of the virus and the lack of effect on the myeloid progenitors (CFU-granulocyte-macrophage) further give evidence to the remarkable tropism of the B19 parvovirus for human hematopoietic cells of erythroid lineage.  相似文献   

8.
无菌留取 5 4例自然流产妇女和 43例妊娠无异常孕妇血清 ,用聚合酶链反应 (PolymeraseChainReaction ,PCR)检测的人细小病毒B19(HumanParvovirusB19,B19)DNA ,在自然流产组中人细小病毒B19DNA有 15例阳性 ,阳性率为 2 7.78%。正常对照组中 ,人细小病毒B19DNA有 2例为阳性 ,阳性率为 4.65 % ,用x2 检验 ,x2 =8.86,P <0 .0 1,两组有非常显著性差异。由此总结 ,人细小病毒B19感染可能是导致自然流产的原因之一  相似文献   

9.
The pathogenic human parvovirus B19 has been shown to undergo productive replication in the erythroid lineage in primary normal human hematopoietic progenitor cells. However, none of the established erythroleukemia cell lines has allowed B19 virus replication in vitro. The remarkable erythroid tissue tropism of B19 virus was evaluated with a human megakaryocytic leukemia cell line, MB-02, which is dependent on the growth factor granulocyte-macrophage colony-stimulating factor but can be induced to undergo erythroid differentiation following treatment with erythropoietin (Epo). Whereas these cells did not support B19 virus DNA replication in the presence of granulocyte-macrophage colony-stimulating factor alone, active viral DNA replication was observed if the cells were exposed to Epo for 5 to 10 days prior to B19 virus infection, as detected by the presence of the characteristic B19 virus DNA replicative intermediates on Southern blots. No replication occurred if the cells were treated with Epo for 3 days or less. In addition, complete expression of the B19 virus genome also occurred in Epo-treated MB-02 cells, as detected by Northern blot analysis. B19 progeny virions were released into culture supernatants that were biologically active in secondary infection of normal human bone marrow cells. The availability of the only homogeneous permanent cell line in which induction of erythroid differentiation leads to a permissive state for B19 virus replication in vitro promises to yield new and useful information on the molecular basis of the erythroid tissue tropism as well as parvovirus B19-induced pathogenesis.  相似文献   

10.
Although sharing a T=1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence correlation spectroscopy showed that an average of nine EGFP domains were associated with these virus-like structures. Atomic force microscopy and immunoprecipitation studies showed that EGFP was displayed on the surface of these fVLPs. Confocal imaging indicated that these chimeric complexes were targeted to late endosomes when expressed in insect cells. The fVLPs were able to efficiently enter cancer cells and traffic to the nucleus via the microtubulus network. Finally, immunoglobulins present in human parvovirus B19 acute and past-immunity serum samples were able to detect antigenic epitopes present in these fVLPs. In summary, we have developed fluorescent virus-like nanoparticles displaying a large heterologous entity that should be of help to elucidate the mechanisms of infection and pathogenesis of human parvovirus B19. In addition, these B19 nanoparticles serve as a model in the development of targetable vehicles designed for delivery of biomolecules.  相似文献   

11.
12.
13.
Parvovirus infection of pregnant women leading to a transplacentar infection of the fetus may result in hydrops fetalis, and ultimately in intrauterine death of the fetus. In situ hybridization with a biotinylated as well as with a 35S-labeled probe for human parvovirus B19 was performed on formalin-fixed paraffin-embedded (FFPE) tissue from a fetus suffering from non-immunologic hydrops fetalis. Histology was suggestive of viral infection probably with human parvovirus. Parvovirus DNA could be detected and precisely localized mainly in the nuclei of erythroid precursors cells within fetal blood vessels of all organs examined. There was no detection of B19 nucleic acid in parenchymal cells of the placenta or the fetal organs, nor within maternal blood cells. These findings are in agreement with the well-known properties of animal parvoviruses to replicate exclusively in proliferating cells. Taking into consideration the problems in diagnosing human parvovirus infection by light microscopy, we conclude that in situ hybridization with an appropriate non-radioactive probe is a valuable, rapid and safe complementary detection method for the diagnosis and study of human parvovirus infections. The 35S-labeled probe is more sensitive than the biotinylated probe, but has the disadvantages of lower resolution of the signal, longer duration of the assay, the hazard of radioactivity and the shorter shelf-life of the probe.  相似文献   

14.
Parvovirus infection of pregnant women leading to a transplacentar infection of the fetus may result in hydrops fetalis, and ultimately in intrauterine death of the fetus. In situ hybridization with a biotinylated as well as with a35S-labeled probe for human parvovirus B19 was performed on formalin-fixed paraffin-embedded (FFPE) tissue from a fetus suffering from non-immunologic hydrops fetalis. Histology was suggestive of viral infection probably with human parvovirus. Parvovirus DNA could be detected and precisely localized mainly in the nuclei of erythroid precursors cells within fetal blood vessels of all organs examined. There was no detection of B19 nucleic acid in parenchymal cells of the placenta or the fetal organs, nor within maternal blood cells. These findings are in agreement with the well-known properties of animal parvoviruses to replicate exclusively in proliferating cells. Taking into consideration the problems in diagnosing human parvovirus infection by light microscopy, we conclude that in situ hybridization with an appropriate non-radioactive probe is a valuable, rapid and safe complementary detection method for the diagnosis and study of human parvovirus infections. The35S-labeled probe is more sensitive than the biotinylated probe, but has the disadvantages of lower resolution of the signal, longer duration of the assay, the hazard of radioactivity and the shorter shelflife of the probe.  相似文献   

15.
Characterization of monoclonal antibodies against human parvovirus B19   总被引:5,自引:0,他引:5  
Eleven hybridoma cell lines producing mouse monoclonal antibodies (mAbs) against human parvovirus B19 were established. Their specificity was as follows. Approximately 5% of fetal erythroid cells inoculated with B19 reacted with all the mAbs and with anti-B19 positive human serum, but not with negative serum by indirect double immunofluorescence staining. All the mAbs recognized both VP-1 (84 kDa) and VP-2 (58 kDa) capsid proteins of B19 virions propagated in vitro and in vivo by Western blotting, and immunoprecipitated B19 virions.  相似文献   

16.
The blood group P antigen, known to be abundantly expressed on erythroid cells, has been reported to be the cellular receptor for parvovirus B19. We have described the development of recombinant parvovirus B19 vectors with which high-efficiency, erythroid lineage-restricted transduction can be achieved (S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, J. Virol. 72:5224-5230, 1998). However, since a low-level transduction of nonerythroid cells could also be detected and since P antigen is expressed in nonerythroid cells, we reevaluated the role of P antigen in the viral binding and entry into cells. Cell surface expression analyses revealed that approximately 75% of primary human bone marrow mononuclear erythroid cells and approximately 31% of cells in the nonerythroid population were positive for P antigen. Two human erythroleukemia cell lines, HEL and K562, and a human promyelocytic leukemia cell line, HL-60, were also examined for P antigen expression and binding and entry of the vector. HEL and K562 cells showed intermediate levels, whereas HL-60 cells demonstrated high levels of expression of P antigen. However, the efficiency of vector binding to these cells did not correlate with P antigen expression. Moreover, despite P antigen positivity and efficient viral binding, HEL, K562, and HL-60 cells could not be transduced with the vector. Low levels of P antigen expression could also be detected in two primary cell types, human umbilical vein endothelial cells (HUVEC) and normal human lung fibroblasts (NHLF). In addition, vector binding occurred in both cell types and was inhibited by globoside, indicating the involvement of P antigen in virus binding to these cells. These primary cells could be efficiently transduced with the recombinant vector. These data suggest that (i) P antigen is expressed on a variety of cell types and is involved in binding of parvovirus B19 to human cells, (ii) the level of P antigen expression does not correlate with the efficiency of viral binding, (iii) P antigen is necessary but not sufficient for parvovirus B19 entry into cells, and (iv) parvovirus B19 vectors can be used to transduce HUVEC and NHLF. These studies further suggest the existence of a putative cellular coreceptor for efficient entry of parvovirus B19 into human cells.  相似文献   

17.
Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus, to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the harbor seal population at least since 2008. The presence of the Seal parvovirus in the brain was confirmed by real-time PCR and in vitro replication. Using in situ hybridization, we showed for the first time that a parvovirus of the genus Erythrovirus was present in the Virchow-Robin space and in cerebral parenchyma adjacent to the meninges. These findings showed that a parvovirus of the genus Erythrovirus can be involved in central nervous system infection and inflammation, as has also been suspected but not proven for human parvovirus B19 infection.  相似文献   

18.
制备抗细小病毒B19-VP2单克隆抗体,用于检测人血清中的B19抗原,辅助诊断相关疾病;也可用于制备人类细小病毒基因工程疫苗。用纯化的基因工程表达的B19-VP2蛋白免疫BALB/c小鼠,取免疫小鼠的脾细胞和小鼠骨髓瘤Sp2/0细胞融合,有限稀释法克隆细胞。ELISA及IF证明抗体特异性。克隆筛选出4株细胞,并初步建立了检测B19-VP2抗原的双抗体夹心酶联免疫吸附试验,为双抗体夹心法检测B19抗原为临床相关疾病诊断提供了检测手段。  相似文献   

19.
Embryonic malformations in a case of intrauterine parvovirus B19 infection   总被引:4,自引:0,他引:4  
An incomplete embryo of 9 weeks development from a woman infected by human parvovirus B19 during early pregnancy was histologically examined. B19-DNA was detected in both embryonic and placental tissue by dot-blot hybridization. Focal vascular endothelial damage was found throughout the entire embryo and placenta together with mononuclear infiltrations around the vessels. In the placenta these mononuclear cells belonged for the greater part to the cytotoxic and/or suppressor T-cell group. One eye showed lens abnormalities and retinal folds. The other eye was microphthalmic and aphakic and showed dysplasia of the sclera, anterior segment, and retina. The skeletal muscle cells displayed a general eosinophilic degeneration. Focally, similar changes were found in heart muscle and smooth muscle tissue. In several tissues pathologic effects at a cellular level were noted, as intranuclear vacuole-like inclusions and nuclear ballooning. On the basis of this study it is concluded that human parvovirus B19 may affect several fetal tissues and may even have teratological effects on a developing human embryo.  相似文献   

20.
Erythroid progenitor cells generated in vitro from peripheral human blood in the presence of interleukin-3 and erythropoietin were infected with human parvovirus B19. B19 virus DNA replication was highest 48 to 72 h after infection, and maximum levels of B19 virus proteins were detected in culture supernatants at 72 to 96 h after infection. B19 virus propagated in vitro was infectious. This cell culture system with peripheral blood cells facilitates studies in vitro of B19 virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号