首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A discontinuous basement membrane of variable width that surrounds spongiotrophoblast cells of rat placenta was examined for the presence of type IV collagen, laminin, a heparan sulfate proteoglycan, entactin, and fibronectin using monospecific antibodies or antisera and the indirect peroxidase technique. At the level of the light microscope, the basement membrane was immunostained for type IV collagen, laminin, entactin, and fibronectin. Heparan sulfate proteoglycan immunostaining, however, was virtually absent even after pretreatment of sections with 0.1 N acetic acid, pepsin (0.1 microgram/ml) or 0.13 M sodium borohydride. Examination in the electron microscope confirmed the lack of immunostaining for heparan sulfate proteoglycan, whereas the other substances were mainly localized to the lamina densa part of the basement membrane. The absence of heparan sulfate proteoglycan in this discontinuous and irregular basement membrane even though type IV collagen, laminin, entactin, and fibronectin are present, suggests that heparan sulfate proteoglycan may have a structural role in the formation of basement membrane.  相似文献   

2.
Macromolecular organization of bovine lens capsule   总被引:3,自引:0,他引:3  
Rabbit antisera to type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin were used to localize these proteins in cross-sections of bovine anterior lens capsule. The antisera were exposed to (a) 10-micron frozen-thawed sections of formaldehyde-fixed tissue for examination in the light microscope by the indirect immunofluorescence method and (b) formaldehyde-fixed and L. R. White plastic-embedded thin sections for electron microscopic examination by the protein A-gold technique. The intensity of immunofluorescence was both uniform and strong throughout for type IV collagen, laminin and entactin, but patchy and weak for fibronectin. Electron microscopic immunolabeling with protein A-gold showed that all five components were distributed throughout the full thickness of the membrane, albeit the density of gold particles was not identical for all basement membrane proteins. In general, the number of particles per micron2 was greatest for type IV collagen and entactin, moderate for laminin and heparan sulfate proteoglycan and low for fibronectin. The ultrastructure of the lens capsule as examined by the electron microscope revealed a relatively uniform parallel alignment of filaments, thought to be collagenous. Since the distribution of the filaments corresponds well with the observed immunocytochemical pattern it is concluded that type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin co-localize throughout the cross-section of the anterior lens capsule.  相似文献   

3.
The localization of two noncollagenous components of basement membranes, laminin and entactin, was determined in rat kidney, muscle, and small intestine using electron immunohistochemistry. In the renal glomerulus anti-laminin antibodies reacted with the basement membrane of peripheral capillary loops and with mesangial matrix. In the peripheral capillary loop laminin was preferentially distributed in both laminae rarae. This was in contrast to anti-entactin that localized in peripheral capillary loops but not in mesangial matrix. Even in the peripheral capillary loops it had a different distribution than laminin. Entactin was found predominantly in the lamina rara interna. In renal tubular basement membranes both antibodies localized throughout the full thickness of the basement membranes, with laminin having a preferential distribution in the lamina rara, whereas entactin was more evenly distributed. In the basement membrane of the duodenal mucosa entactin localized in the lamina densa, whereas laminin was present in both laminae. In skeletal muscle both antibodies had similar localization in all basement membranes. These results demonstrate that entactin is an intrinsic component of basement membranes. They also demonstrate that basement membranes from different tissues have subtle variations in content and/or assembly of the different components. It is likely that these variations may be reflected in different functional properties.  相似文献   

4.
Basement membranes were divided into two types: 1) thin basement membranes, such as those of the epidermis, trachea, jejunum, seminiferous tubule, and vas deferens of the rat, the ciliary process of the mouse, and the seminiferous tubule of the monkey, and 2) thick basement membranes, such as the lens capsule of the mouse and Reichert's membrane of the rat. High-magnification electron microscopy was used to examine both types after fixation either in glutaraldehyde followed by postosmication or in potassium permanganate. The basic structure of thin and thick basement membranes was found to be a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the diameter of these cords was variable, but averaged 4 nm in all cases examined. The spaces separating the cords differed, however. In the lamina densa of thin basement membranes, the diameter of these spaces averaged about 14 nm in every case, whereas in the lamina lucida it ranged up to more than 40 nm. Intermediate values were recorded in thick basement membranes. Finally, the third, inconstant layer of thin basement membranes, pars fibroreticularis, was composed of discontinuous elements bound to the lamina densa: i.e., anchoring fibrils, microfibrils, or collagen fibrils. In particular, collagen fibrils were often surrounded by processes continuous with the lamina densa and likewise composed of a typical cord network. Finally, two features were encountered in every basement membrane: 1) a few cords were in continuity with a 1.4- to 3.2-nm thick filament or showed such a filament within them; the filaments became numerous after treatment of the seminiferous tubule basement membrane with the proteolytic enzyme, plasmin, since cords decreased in thickness and could be reduced to a filament, and 2) at the cord surface, it was occasionally possible to see 4.5-nm-wide sets of two parallel lines, referred to as "double tracks." On the basis of evidence that the filaments are type IV collagen molecules and the double tracks are polymerized heparan sulfate proteoglycan, it is proposed that cords are composed of an axial filament of type IV collagen to which are associated glycoprotein components (laminin, entactin, fibronectin) and the double tracks of the proteoglycan.  相似文献   

5.
A series of basement membranes was immunolabeled for laminin, type IV collagen, and heparan sulfate proteoglycan in the hope of comparing the content of these substances. The basement membranes, including thin ones (less than 0.3 micron) from kidney, colon, enamel organ, and vas deferens, and thick ones (greater than 2 micron), i.e., Reichert's membrane, Descemet's membrane, and EHS tumor matrix, were fixed in formaldehyde, embedded in Lowicryl, and treated with specific antisera or antibodies followed by anti-rabbit immunoglobulin bound to gold. The density of gold particles, expressed per micron2, was negligible in controls (less than or equal to 1.1), but averaged 307, 146, and 23, respectively, for laminin, collagen IV, and proteoglycan over the thick basement membranes (except for Descemet's membranes, over which the density was 16, 5, and 34, respectively) and 117, 72, and 64, respectively, over the lamina densa of the thin basement membranes. Lower but significant reactions were observed over the lamina lucida. Interpretation of the gold particle densities was based on (a) the similarity between the ultrastructure of most thick basement membranes and of the lamina densa of most thin basement membranes, and (b) the biochemical content of the three substances under study in the EHS tumor matrix (Eur J Biochem 143:145, 1984). It was proposed that thick basement membranes (except Descemet's) contained more laminin and collagen IV but less heparan sulfate proteoglycan than the lamina densa of thin basement membranes. In the latter, there was a fair variation from tissue to tissue, but a tendency towards a similar molar content of the three substances.  相似文献   

6.
Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.  相似文献   

7.
Electron microscopic immunostaining was used to examine the localization of type IV collagen, laminin, entactin , heparan sulfate proteoglycan, and fibronectin within the basement membranes of the rat kidney. In preliminary experiments, various methods of processing formaldehyde-fixed kidney were compared using antilaminin antiserum and the indirect immunoperoxidase method. Little or no laminin immunostaining of the glomerular basement membrane was present in sections unless they had been frozen-thawed; and even in this case, the immunostaining was light in comparison to that of basement membranes in adjacent tubules. However, when frozen-thawed sections were treated with 0.5% sodium borohydride, immunostaining was then as strong in glomerular as in tubular basement membranes. Accordingly, this treatment was applied to frozen-thawed sections before immunostaining for any of the substances under study. Immunostaining of the glomerular basement membrane for each of the five substances was fairly uniform throughout the lamina densa (also called basal lamina), but uneven in the lamina lucida interna and externa (also called lamina rara interna and externa) in which stained bands extended from the lamina densa. Similarly in the basement membranes of tubules, immunostaining for the five substances was localized to the lamina densa and bands extending into the lamina lucida. When the ultrastructure of the glomerular basement membrane was examined, three structures were found: (1) a network of 4-nm-thick "cords," which seems to be the main component; the cords are closely packed in the lamina densa and more loosely arranged in the lamina lucida interna and externa; (2) straight, hollow 7-10-nm-thick structures referred to as " basotubules "; and (3) 3.5-nm elements composed of minute paired rods, referred to as "double pegs." The distribution of the cords, but not that of the other two structures, was related to the immunostaining pattern. It is concluded that (1) to fully reveal the antigenicity of the glomerular basement membrane, frozen-thawed sections must be treated with sodium borohydride prior to immunostaining, possibly because this basement membrane is more compact than the others; and (2) in both glomerular and tubular basement membranes, type IV collagen, laminin, entactin , heparan sulfate proteoglycan and fibronectin are colocalized in the lamina densa and its extensions to the laminae lucidae . Since the distribution of the cords corresponds to that of immunostaining, it is likely that the five substances are present within the cords.  相似文献   

8.
Immunohistochemical methods were used to determine whether type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan were present in diverse basement membranes. Antisera or antibodies against each substance were prepared, tested by enzyme-linked immunosorbent assay, and exposed to frozen sections of duodenum, trachea, kidney, spinal cord, cerebrum, and incisor tooth from rats aged 20 days to 34 months. Bound antibodies were then localized by indirect or direct peroxidase methods for examination in the light microscope. Immunostaining for type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan was observed in all of the basement membranes encountered. Fibronectin was also found in connective tissue. In general, the intensity of immunostaining was strong for type IV collagen and laminin, moderate for heparan sulfate proteoglycan, and weak for fibronectin. The pattern was similar in the age groups under study. Very recently the sulfated glycoprotein, entactin, was also detected in the basement membranes of the listed tissues in 20-day-old rats. It is accordingly proposed that, at least in the organs examined, type IV collagen, laminin, fibronectin, heparan sulfate proteoglycan, and entactin are present together in basement membranes.  相似文献   

9.
Three basement membrane components, laminin, collagen IV, and heparan sulfate proteoglycan, were mixed and incubated at 35 degrees C for 1 h, during which a precipitate formed. Centrifugation yielded a pellet which was fixed in either potassium permanganate for ultrastructural studies, or in formaldehyde for Lowicryl embedding and immunolabeling with protein A-gold or anti-rabbit immunoglobulin-gold. Three types of structures were observed and called types A, B, and C. Type B consisted of 30-50-nm-wide strips that were dispersed or associated into a honeycomb-like pattern, but showed no similarity with basement membranes. Immunolabeling revealed that type B strips only contained heparan sulfate proteoglycan. The structure was attributed to self-assembly of this proteoglycan. Type A consisted of irregular strands of material that usually accumulated into semisolid groups. Like basement membrane, the strands contained laminin, collagen IV, and heparan sulfate proteoglycan, and, at high magnification, they appeared as a three-dimensional network of cord-like elements whose thickness averaged approximately 3 nm. But, unlike the neatly layered basement membranes, the type A strands were arranged in a random, disorderly manner. Type C structures were convoluted sheets composed of a uniform, dense, central layer which exhibited a few extensions on both surfaces and was similar in appearance and thickness to the lamina densa of basement membranes. Immunolabeling showed that laminin, collagen IV, and proteoglycan were colocalized in the type C sheets. At high magnification, the sheets appeared as a three-dimensional network of cords averaging approximately 3 nm. Hence, the organization, composition, and ultrastructure of type C sheets made them similar to the lamina densa of authentic basement membranes.  相似文献   

10.
The macromolecular components of bovine glomerular basement membrane (GBM) and lens capsules (anterior and posterior) solubilized by sequential extractions with denaturing agents were quantitated and characterized by polyacrylamide gel electrophoresis, CL-6B filtration, and DEAE-cellulose chromatography with the help of immunochemical techniques. Laminin, entactin, fibronectin, and heparan sulfate proteoglycan were primarily recovered (over 80%) from both basement membranes in a guanidine HCl extract which contained only a limited amount of the total protein (10-14%); most of the remainder of these noncollagenous components could be solubilized by the guanidine in the presence of reducing agent. Although a portion of the Type IV collagen could be obtained by these treatments, effective extraction of this protein depended on exposure to sodium dodecyl sulfate under reducing conditions. Immunoblot analysis revealed a remarkably similar pattern for GBM and lens capsule Type IV collagens with prominent bands of Mr = 390,000, 210,000, and 190,000 being evident. Fibronectin was present in much greater amounts in GBM than lens capsule while the reverse was true for entactin. In both GBM and lens capsules, the entactin (Mr = 150,000) exceeded laminin; the latter protein on immunoblotting was found to contain primarily the alpha-subunit (Mr = 200,000). The size of the heparan sulfate proteoglycan from anterior (Mr = 400,000) and posterior lens capsule (Mr greater than 500,000) was substantially larger than that from GBM (Mr = 200,000). During DEAE-cellulose chromatography under nonreducing conditions in a denaturing solvent, a portion of the Type IV collagen coeluted with the proteoglycan from these membranes. Considerable Bandeiraea simplicifolia I binding activity (alpha-D-galactose specific) was observed in GBM and lens capsule extracts and column fractions which could not be accounted for by laminin alone. Several components which reacted with this lectin were seen on transblots and among these Type IV collagen was identified. In contrast to the basement membranes from bovine tissues, the constituents from human GBM did not react with the B. simplicifolia I lectin.  相似文献   

11.
Entactin, a sulfated glycoprotein with a molecular weight (MW) of about 150 kD, is present in vascular basement membranes and in the interstitial connective tissue of the mammary glands of virgin rats. It does not appear to be present in the basement membrane surrounding the mammary ductal system. However, in lactating mammary glands entactin is also present in the basement membrane region surrounding the secretory alveoli. Ultrastructural localisation of entactin reveals that it is present on the basal surface of epithelial cells, with patchy staining in the lamina lucida and lamina densa. Entactin also appears to be associated with interstitial collagen fibres. Mammary fibroblastic cells in culture are able to produce entactin, whereas mammary epithelial and myoepithelial cells, which synthesise the basement membrane proteins laminin and type IV collagen, fail to synthesise entactin.  相似文献   

12.
The anionic sites of the basement membrane of rat seminiferous tubules were demonstrated ultrastructurally in the lamina densa by using cationic polyethyleneimine (PEI). The sites were largely digested out after incubation with heparitinase, indicating a large proportion of heparan sulfates. The anionic sites were present as early as day 16 of gestation on the interstitial side of the lamina densa, and after gestation day 20 they were symmetrically organized on both sides of the lamina densa. The number of sites is not modified postnatally. They appear more irregular in density with advancing age. Experimental conditions as cryptorchidism, fetal irradiation, and ligation of the ductuli efferents lead to unspecific alterations in the distribution of the anionic sites that are parallel to the modifications in the basement membrane.  相似文献   

13.
Basement membrane complexes with biological activity   总被引:123,自引:0,他引:123  
We have studied the reconstitution of basement membrane molecules from extracts prepared from the basement membrane of the EHS tumor. Under physiological conditions and in the presence of added type IV collagen and heparan sulfate proteoglycan, gellike structures form whose ultrastructure appears as interconnected thin sheets resembling the lamina dense zone of basement membrane. The major components of the reconstituted structures include laminin, type IV collagen, heparan sulfate proteoglycan, entactin, and nidogen. These components polymerize in constant proportions on reconstitution, suggesting that they interact in defined proportions. Molecular sieve studies on the soluble extract demonstrate that laminin, entactin, and nidogen are associated in large but dissociable complexes which may be a necessary intermediate in the deposition of basement membrane. The reconstituted matrix was biologically active and stimulated the growth and differentiation of certain cells.  相似文献   

14.
Summary The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18–20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages.Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

15.
The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18-20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages. Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

16.
Basement membranes contain 4.5-nm wide sets of two parallel lines, along which short prongs called "spikes" occur at regular intervals. The nature of this structure, referred to as "double tracks," was investigated in Lowicryl sections of mouse kidney and rat Reichert's membrane immunolabeled for basement membrane components using secondary antibodies conjugated to 5-nm gold particles. When the mouse glomerular basement membrane and rat Reichert's membrane were exposed to antibodies directed to the core protein of heparan sulfate proteoglycan, 95% or more of the gold particles were over double tracks, whereas after exposure of Reichert's membrane to antisera against laminin, collagen IV, or entactin, labeling of the double tracks remained at the random level. When heparan sulfate proteoglycan was incubated in Tris buffer, pH 7.4, at 35 degrees C for 1 hr, a precipitate resulted which, on electron microscopic examination, was found to consist of 5- to 6-nm wide sets of two parallel lines along which densities were observed. Immunolabeling confirmed the presence of the proteoglycan's core protein in the sets. Since double tracks were closely similar to this structure and were labeled with the same antibodies, they were likely to be also composed of heparan sulfate proteoglycan.  相似文献   

17.
The ultrastructural localization of the basement membrane glycoprotein laminin was investigated in basement membranes of proximal tubules of the mouse kidney. The localization of laminin was determined using two different immunoperoxidase and one immunogold preembedding technique and one immunogold postembedding technique on unfixed and formaldehyde fixed tissue. Strong differences in the immunolocalization for laminin were found in the lamina densa of the tubular basement membrane using different techniques. After preembedding immunostaining for laminin using IgG--PO as secondary antibody, a positive reaction for the lamina densa was found in the formaldehyde fixed as well as in the unfixed kidney. After preembedding immunostaining for laminin using Protein-A--PO, staining of the 1. densa was seen in the unfixed, but not in the fixed kidney. It was striking that no clear immunoreaction in the 1. densa of the tubular basement membrane was seen in either the fixed or unfixed tissue after preembedding immunostaining for laminin using protein A-gold. With a direct postembedding immunogold technique laminin was localized only in the 1. fibroreticularis and the 1. rara but not in the 1. densa of basement membranes of proximal tubules of the unfixed and the fixed kidney.  相似文献   

18.
Structure, composition, and assembly of basement membrane   总被引:3,自引:0,他引:3  
Basement membranes are thin layers of matrix separating parenchymal cells from connective tissue. Their ultrastructure consists of a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the cord thickness averages 3-4 nm. Immunostaining reveals that the cords are composed of at least five substances: collagen IV, laminin, heparan sulfate proteoglycan, entactin, and fibronectin. Collagen IV has been identified as a filament of variable thickness persisting after the other components have been removed by plasmin digestion or salt extraction. Heparan sulfate proteoglycan appears as sets of two parallel lines, referred to as "double tracks," which run at the surface of the cords. Laminin is detected in the cords as diffuse material within which thin wavy lines may be distinguished. The entactin and fibronectin present within the cords have not been identified as visible structures. The ability of laminin, heparan sulfate proteoglycan, fibronectin, and entactin to bind to collagen IV has been demonstrated by visualization with rotary shadowing and/or biochemical studies. Incubation of three of these substances-collagen IV, laminin (with small entactin contamination), and proteoglycan-at 35 degrees C for 1 hr resulted in a precipitate that was sectioned for electron microscopic examination and processed for gold immunolabeling for each of the three incubated substances. Three structures are present in the precipitate: 1) a lacework, exclusively composed of heparan sulfate proteoglycan in the form of two parallel lines, similar to double tracks; 2) semi-solid, irregular accumulations, composed of the three initial substances distributed on a cord network; and 3) convoluted sheets, which are also composed of the three initial substances distributed on a cord network but which, in addition, have the uniform appearance and thickness of the lamina densa of basement membrane. Hence these sheets are closely similar to the main component of authentic basement membranes.  相似文献   

19.
Summary The ultrastructural localization of the basement membrane glycoprotein laminin was investigated in basement membranes of proximal tubules of the mouse kidney. The localization of laminin was determined using two different immunoperoxidase and one immunogold preembedding technique and one immunogold postembedding technique on unfixed and formaldehyde fixed tissue. Strong differences in the immunolocalization for laminin were found in the lamina densa of the tubular basement membrane using different techniques.After preembedding immunostaining for laminin using JgG-PO as secondary antibody, a positive reaction for the lamina densa was found in the formaldehyde fixed as well as in the unfixed kidney. After preembedding immunostaining for laminin using Protein-A-PO, staining of the l. densa was seen in the unfixed, but not in the fixed kidney. It was striking that no clear immunoreaction in the l. densa of the tubular basement membrane was seen in either the fixed or unfixed tissue after preembedding immunostaining for laminin using protein A-gold. With a direct postembedding immunogold technique laminin was localized only in the l. fibroreticularis and the l. rara but not in the l. densa of basement membranes of proximal tubules of the unfixed and the fixed kidney.  相似文献   

20.
Anionic binding sites in the lamina densa of the basement membrane of the rat epididymal epithelium were demonstrated ultrastructurally with the use of cationized polyethyleneimine (PEI). Enzyme digestion with heparitinase removed the anionic sites, indicating that they consist largely of heparan sulfates. The anionic sites are present as early as the 16th day of gestation on the interstitial face of the lamina densa; later during gestation they are localized on both faces of the lamina densa without further modification after birth. The distribution of the anionic sites was identical all along the epididymal duct. After castration and ligation of efferent ducts or in the state of cryptorchidism the sites were more numerous and located inside the thicker portion of the lamina densa. These alterations were more prominent in the initial segment compared to the distal segments, suggesting a differential androgen dependence of the reactive sites and their patterns of distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号