首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以‘八卦洲水芹’及其紫色叶柄突变型水芹‘南选八卦洲紫水芹’为实验材料,利用RT-PCR方法从‘南选八卦洲紫水芹’中克隆得到水芹肉桂醇脱氢酶(CAD)基因,命名为OjCAD。OjCAD基因开放阅读框长为1 074bp,编码357个氨基酸。OjCAD蛋白相对分子质量为39 143.10,理论等电点为6.91,属于MDR家族。系统进化分析显示,水芹OjCAD与同属伞形科的胡萝卜CAD进化关系最近,具有高度保守性。OjCAD编码的蛋白属于疏水蛋白,空间结构主要由7个α-螺旋和17个β-折叠组成。实时定量PCR分析显示,OjCAD基因在紫色和非紫色水芹的叶片和叶柄中相对表达量存在差异,水芹OjCAD基因在叶片中的表达量显著高于叶柄,在‘八卦洲水芹’中的表达量高于‘南选八卦洲紫水芹’。该研究结果为进一步分析水芹木质素生物合成奠定了基础。  相似文献   

2.
类黄酮-3'5'-羟化酶(F3'5'H)基因是合成蓝色飞燕草色素类花色苷的关键酶基因。本研究采用RT-PCR法从彩色马铃薯品种‘转心乌’中克隆到了F3'5'H基因的c DNA,并进行了生物信息学和组织表达模式分析,希望能探明F3'5'H基因在彩色马铃薯花色苷合成中的作用及表达方式。克隆到的F3'5'H c DNA序列全长1 720 bp,编码509个氨基酸残基,同源比对表明F3'5'H与茄科植物聚在一起,其次是其它双子叶植物。F3'5'H具有信号肽和明显的跨膜结构域,属于分泌蛋白且为稳定的亲水蛋白,定位于细胞质。说明F3'5'H在细胞质中的粗糙型内质网上合成前体后,跨膜运输到其它部位或细胞器中发挥作用。α螺旋和无规则卷曲是F3'5'H的主要二级结构元件。F3'5'H具有细胞色素P450的"PPGP"、"AGTDT"、"FGAGRRICAG"三段基序,且只有一个功能结构域,与细胞色素P450的功能结构域相匹配,属于细胞色素P450家族的一员。组织特异性表达结果表明:F3'5'H相对表达量和花色苷含量均是块茎高于叶片和地上茎,它们的变化趋势基本一致,花色苷含量较高的器官,其F3'5'H的相对表达量也高,说明花色苷的积累与F3'5'H的表达正相关。  相似文献   

3.
根据葡萄的类黄酮3′-羟化酶(F3'H)基因全长cDNA序列Blast所得棉花的EST序列设计引物,以开花后16 d(DPA16)的新彩棉5号(xC-5)纤维为材料,利用RACE和RT-PCR技术分离得到了2个类黄酮3′-羟化酶基因cDNA序列,此2个序列编码区完全相同,仅在3'UTR区存在片段长短的差异,推测可能是基因转录后加工方式不同所造成.克隆所获得的棉花F3'H基因编码区全长1 533 bp,编码510个氨基酸,氨基酸序列分析预测表明,该基因所编码蛋白含有一个跨膜结构域,是一种分泌蛋白,定位于内质网上,并含有一段与细胞色素P450功能区相匹配的保守功能域;序列比对结果表明,棉花F3'H基因与其他多个物种的F3'H基因在氨基酸序列上有较高的同源性;聚类分析结果表明,棉花F3'H蛋白与双子叶植物大豆的F3'H亲缘关系较为接近,而与单子叶植物高梁等作物则较远.  相似文献   

4.
花青素生物合成关键酶的研究进展   总被引:4,自引:0,他引:4  
花青素是植物花呈现不同色彩的物质基础,其生物合成途径主要受到查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)、类黄酮3'-羟化酶(F3'H)、类黄酮3’,5’-羟化酶(F3'5'H)、二羟基黄酮醇还原酶(DFR)、花色素苷合成酶(ANS)以及类黄酮3-O-糖基转移酶(UFGT)等关键酶的控制.主要介绍花青苷生物合成途径、关键酶晶体结构及利用基因工程改造花色的研究进展,讨论目前花色改造存在的问题,并对今后的研究前景进行展望.  相似文献   

5.
矮牵牛编码F3′5′H的蓝色基因表达载体构建及转化   总被引:1,自引:0,他引:1  
类黄酮3',5'羟基化酶(Flavonoid-3',5'hydroxylase,F3'5'H)是花色苷代谢途径中的一个关键酶,能使花色素合成趋向于形成蓝色的飞燕草色素,从而使花色向蓝紫色偏移.本研究从蓝紫色矮牵牛(Petunia hybrida)花瓣中克隆了编码F3'5,H的蓝色基因Hf1,并通过PCR技术获得百合花特异表达启动子(PchsA),将百合PchsA与Hf1基因融合,构建了百合花特异表达启动子调控的Hf1基因植物表达载体,通过农杆菌介导的叶盘法转化粉红色矮牵牛.抗性筛选和PCR检测鉴定转基因植株,结果表明,成功地获得了转基因阳性植株.  相似文献   

6.
类黄酮3′,5′羟-化酶( flavonoid 3′,5′-hydroxylase, F3′5′H)是植物花青素生物合成途径中的一个关键酶,紫色土豆( Solanum tueb or sum) F3′5′H基因的克隆将为花青素合成调控和花青素代谢工程研究提供优质基因资源。研究采用RACE技术克隆了紫色土豆F3′5′H基因的cDNA全长序列,用生物信息学方法对其核苷酸和蛋白质序列进行了分析,并用半定量PCR 技术分析了F3′5′H基因在不同组织中的表达情况,同时研究了赤霉素和蔗糖处理后F3′5′H基因表达与花青素积累之间的相关性。研究结果表明,克隆的紫色土豆F3′5′H的cDNA全长为1854 bp,包含一个1530 bp的完整ORF,共编码509个氨基酸。生物信息学分析表明,StF3′5′H基因推测编码的氨基酸序列与其它植物的F3′5′H蛋白的相似性很高。 StF3′5′H基因的表达具有组织特异性,在紫色土豆根、茎和叶柄中都有表达,其中在叶柄中表达最强,而在块茎、叶轴和叶片中几乎检测不到StF3′5′H基因的表达。赤霉素和蔗糖能促进紫色土豆StF3′5′H基因的表达,进而促进花青素的积累。  相似文献   

7.
用基因特异引物对紫茎泽兰F3'H基因进行PCR扩增、T-A克隆及测序,采用DNAMAN 5.0和MEGA 3.0等生物信息学软件进行序列分析,并对F3'H基因的组织表达特性及原核表达产物进行了分析。结果表明紫茎泽兰F3'H基因cDNA全长为1722 bp(GeneBank登录号EF137714),编码570个氨基酸,与翠菊、大豆和非洲菊F3'H基因的氨基酸序列同源性分别为64.4%,57.3%和54.5%。Southe(?)杂交表明该基因为单拷贝。Northe(?)杂交表明F3'H基因在紫茎泽兰叶中表达量最高,且其表达受泽兰酮诱导。SDS-PAGE电泳表明F3'H基因经IPTG诱导后在大肠杆菌中能表达56.8 kDa的目的蛋白。  相似文献   

8.
喜盐鸢尾(Iris halophila Pall.)及其变种蓝花喜盐鸢尾(I.halophila Pall.var.sogdiana(Bung)Grubov)因耐盐碱及其多种花色而具有盐碱地园艺开发价值。本文根据喜盐鸢尾内轮花被转录组测序结果,利用基因特异性引物从这2种植物中分别克隆了编码查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、类黄酮-3',5'-羟基化酶类(F3'5'H-like)等基因的部分片段,并对它们在内轮花被中的表达水平进行实时定量PCR分析。序列分析结果确认在喜盐鸢尾中所克隆的CHS(311 bp)、CHI(457 bp)、F3'5'H-like(496 bp)3个基因(部分)未见文献报道与NCBI等数据库记录。其中F3'5'H-like基因与经典的属于细胞色素P450CYP75A亚家族的F3'5'H不同,而与万带兰的F3'5'H-like同属于CYP76AB亚家族,为一类新的蓝花相关基因。实时定量PCR表达分析结果表明,与黄花的喜盐鸢尾相比,蓝花喜盐鸢尾中CHS与F3'5'H-like显著上调表达,可能是其花色不同于喜盐鸢尾的主要原因。  相似文献   

9.
类黄酮是酚类代谢物的一大亚组,其生物合成属于苯丙素代谢途径的分支,它们广泛分布在整个植物界。不仅在植物中有极其重要的生理、生化和生态功能,而且对动物的生物活性及提供营养等方面做出重要贡献。油橄榄叶、果实、根都富含类黄酮,具有重要研究价值。本研究综述了油橄榄类黄酮生物合成途径相关酶(CHI,CHS,F3H,DFR,FLS,FNSI,LAR,F3'H,F3',5'H)的底物特异性和功能性区域,分析总结了编码这些酶的基因在不同物种间的序列相似性和在不同组织的表达特异性。这对深入研究植物类黄酮生物合成相关酶的结构和功能,基因的克隆、表达和调控以及对油橄榄类黄酮生物合成途径相关酶的研究具有参考价值。  相似文献   

10.
11.
类黄酮3',5'羟基化酶(Flavonoid-3',5'hydroxylase,F3'5'H)是花色苷代谢途径中的一个关键酶,能使花色素合成趋向于形成蓝色的飞燕草色素,从而使花色向蓝紫色偏移.本研究从蓝紫色矮牵牛(Petunia hybrida)花瓣中克隆了编码F3'5,H的蓝色基因Hf1,并通过PCR技术获得百合花特异表达启动子(PchsA),将百合PchsA与Hf1基因融合,构建了百合花特异表达启动子调控的Hf1基因植物表达载体,通过农杆菌介导的叶盘法转化粉红色矮牵牛.抗性筛选和PCR检测鉴定转基因植株,结果表明,成功地获得了转基因阳性植株.  相似文献   

12.
该研究以自育茶菊品种‘14-C-1’为材料,克隆了一个黄烷酮3-羟化酶(F3H)基因,命名为CmF3H.生物信息学分析表明,‘14-C-1’CmF3H的cDNA序列(GenBank登录号MW454869)全长为1284 bp,开放阅读框为1095 bp,编码364个氨基酸,编码蛋白的理论分子量为41.19kD,等电点为...  相似文献   

13.
利用RT-PCR和RACE方法,从石榴(Punica granatum L.)果皮中克隆到一个类黄酮糖基转移酶(UFGT)基因(PgUFGT)全长cDNA序列(GenBank登录号为KF841620)。PgUFGT基因编码区1 476bp,编码491个氨基酸。PgUFGT蛋白具有保守PSPG基序、UDP-糖基转移酶家族结构域和UDP-葡萄糖醛酸基/葡萄糖基转移酶保守域(UDPGT),与其他植物UFGT蛋白一致性较高;系统进化树分析结果表明,PgUFGT属于类黄酮3-O-糖基转移酶类。荧光定量qRT-PCR结果表明,PgUFGT基因在‘红宝石’和‘水晶甜’2个石榴品种的发育期内具有不同的表达模式,PgUFGT在‘红宝石’石榴中有2个转录表达高峰,而在‘水晶甜’石榴中仅有1个表达高峰,表明PgUFGT可能在2个石榴品种中具有不同的催化作用。该研究结果为进一步研究石榴果实色泽形成的分子机制奠定了基础。  相似文献   

14.
芜菁的类黄酮3'羟化酶基因克隆和UV-A诱导表达特性   总被引:1,自引:0,他引:1  
用UV-A处理'津田'芜菁和'赤丸'芜菁块根24 h后提取总RNA,以RT-PCR方法分别克隆到BrF3'H1和BrF3'H2基因.BrF3'HI和BrF3'H2的开放读码框为1 536 bp,均编码511个氨基酸.氨基酸序列分析显示,BrF3'Hl和BrF3H2与甘蓝型油菜F3tH的同源性达99%.在第45~476的肽段含有细胞色素P450家族基因的结构域.BrF3HI和BrF3'H2基因有高度同源性,核苷酸序列的17个位点处有差异,推导的氨基酸序列在5个位点处有差异.Northern杂交结果显示,UV-A可以诱导BrF3HI表达,基因的表达量与UV-A处理时间呈相关,UV-A不能诱导BrF3'H2基因表达.  相似文献   

15.
用本研究设计的"预先去杂-SDS法"从梅花嫩叶提取到高质量的基因组DNA.根据11条已公开发表的并提交到GenBank的类黄酮3'-羟化酶基因cDNA的假定氨基酸序列的保守区设计2个正向简并引物和3个反向简并引物组成6对引物,仅有1对引物能以PCR法同时从梅花'南京红须'、'南京红'和'粉皮宫粉'的基因组DNA扩增到一个469 bp的核苷酸片段,这3个片段在总体上有99.72%的一致性,与11条类黄酮3'-羟化酶基因cDNA的相应区域有65.57%的一致性.同时,"GGEK"并非类黄酮3'-羟化酶的特征性模体.这是首次从木本植物的基因组DNA克隆到类黄酮3'-羟化酶基因片段.本研究结果可为梅花类黄酮3'-羟化酶基因全长的克隆奠定基础.  相似文献   

16.
根据从基因组DNA扩增到的梅花‘南京红须’类黄酮3’-羟化酶基因片段(469bp)设计3条嵌套的特异性引物.与6条短的随机简并引物组成的引物库分别用热不对称交错PCR法从‘南京红须’基因组DNA扩增该片段的5’和3’旁侧序列。获得的5’和3’旁侧序列分别长1443bp和1200bp。将两个旁侧序列在469bp片段的基础上拼接得到‘南京红须’全长为2lrl4bp的类黄酮3’-羟化酶基因,被命名为pmhxF3’H。序列分析表明:该基因与11条正式发表的、已递交到GenBank的类黄酮3’-羟化酶基因的eDNA序列在总体上有52.21%的一致性.具有3个内含子。其启动子含有1个“AGGA盒”、1个“GC盒”和3个“TATA盒”。这是首次用热不对称交错PCR法从木本植物的基因组DNA克隆到类黄酮3’-羟化酶基因。本研究将为梅花花色的分子生物学机理探索、花色的基因工程改良提供参考。  相似文献   

17.
赵昶灵  杨清  陈俊愉   《广西植物》2006,26(6):608-616
用该研究设计的“预先去杂-SDS法”从梅花嫩叶提取到高质量的基因组DNA。根据11条已公开发表的并提交到GenBank的类黄酮3'-羟化酶基因cDNA的假定氨基酸序列的保守区设计2个正向简并引物和3个反向简并引物组成6对引物,仅有1对引物能以PCR法同时从梅花‘南京红须’、‘南京红’和‘粉皮宫粉’的基因组DNA扩增到一个469bp的核苷酸片段,这3个片段在总体上有99.72%的一致性,与11条类黄酮3'-羟化酶基因cDNA的相应区域有65.57%的一致性。同时,“GGEK”并非类黄酮3'-羟化酶的特征性模体。这是首次从木本植物的基因组DNA克隆到类黄酮3'-羟化酶基因片段。该研究结果可为梅花类黄酮3'-羟化酶基因全长的克隆奠定基础。  相似文献   

18.
用本研究设计的“预先去杂—SDS法”从梅花嫩叶提取到高质量的基因组DNA。根据11条已公开发表的并提交到GenBank的类黄酮3′-羟化酶基因cDNA的假定氨基酸序列的保守区设计2个正向简并引物和3个反向简并引物组成6对引物,仅有1对引物能以PCR法同时从梅花‘南京红须’、‘南京红’和‘粉皮宫粉’的基因组DNA扩增到一个469 bp的核苷酸片段,这3个片段在总体上有99 .72 %的一致性,与11条类黄酮3′-羟化酶基因cDNA的相应区域有65 .57 %的一致性。同时,“GGEK”并非类黄酮3′-羟化酶的特征性模体。这是首次从木本植物的基因组DNA克隆到类黄酮3′-羟化酶基因片段。本研究结果可为梅花类黄酮3′-羟化酶基因全长的克隆奠定基础。  相似文献   

19.
对红色、黄色、粉紫色和白色菊花品种不同开放度的花序舌状花中CHS、CHI、DFR、F3H、F3′H和3GT基因的表达量进行了相对定量分析。结果表显示:6个基因的表达因不同花色、不同发育阶段而异。‘钟山红鹰’(红色)中各基因的表达量均较高,且均在Ⅱ(松蕾期)或Ⅲ(半开期)期达到峰值,其中DFR、3GT基因的表达量远高于其他花色品种。‘金陵娇黄’(黄色)中CHS、CHI基因表达量较高,且Ⅰ(紧蕾期)、Ⅱ期表达量高于Ⅲ、Ⅳ(盛开期)期;3GT、DFR基因表达量分别高或低于‘金陵笑靥’(粉紫色)品种中相应基因的表达量,但均比红色品种低;F3H在4个品种中表达量最低,F3′H表达量接近或略低于红色或粉紫色品种,且各阶段表达水平较稳定。‘金陵笑靥’中DFR表达量仅次于‘钟山红鹰’,3GT和CHS表达量低于红色与黄色品种。‘钟山雪桂’(白色)中各基因仅有微量表达,除F3H外各基因的表达量明显低于其他花色品种。研究表明,花色素结构基因DFR、3GT是菊花花色素合成的关键基因,DFR很可能是限速关键基因,一定表达水平的CHS、CHI也是菊花花色素合成所必须的,F3H基因与花色素合成不存在直接相关。  相似文献   

20.
为了解糜子黑色与黄色果皮的遗传规律以及其形成机理,利用黄色果皮品种‘黄粒糜Ⅰ’和黑色果皮品种‘2016106Ⅰ’构建杂种F1、F2代,分析果皮颜色的遗传规律,利用F3代籽粒进行转录组测序,挖掘影响糜子籽粒颜色的关键基因。试验结果表明,黑色对黄色为显性,由单基因控制;根据GO和KEGG富集分析结果,共筛选出13个与类黄酮合成途径相关的差异基因,仅有C2845_PM02G08740、C2845_PM04G29280和C2845_PM09G22680为上调表达基因,其余10个均为下调表达基因,上述基因编码肉桂醇脱氢酶和肉桂酰CoA还原酶等多种酶,与颜色的形成密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号