首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以苹果(Malus domestica)矮化砧M9T337幼苗为试材,研究了5种不同供氮方式(NO_3~--N浓度由低变高、NO_3~--N浓度由高变低、持续适量供氮、持续低氮及持续高氮,分别以N1、N2、N3、N4和N5表示)对苹果幼苗生物量、根系形态、内源激素含量及根系硝态氮转运蛋白基因NRT1.1和NRT2.1相对表达量的影响。结果表明,与N3处理相比,N4处理根冠比增加了11.11%,而N5处理降低了28.57%。处理第21天,N3处理总根长、总表面积及根长密度最大,其次为N2处理,最小的为N5处理,而叶面积为N3N5N2N1N4。处理7 d后,N4处理根系吲哚乙酸(IAA)含量显著高于N5处理,而叶片IAA含量显著低于N5处理。N2处理在NO_3~--N浓度变换11 d内根系IAA含量增加了16.68%,叶片IAA含量降低了20.90%;N1处理趋势相反。处理21 d内,N5处理根系和叶片玉米素(Z)和玉米素核苷(ZR)含量均显著高于N4处理。各处理根系脱落酸(ABA)含量在处理第21天时无显著差异,而叶片ABA含量为N4N2N1N5N3。N4处理根系NRT1.1的相对表达量在处理7 d后显著高于N5处理,且N4处理1 d后显著诱导了根系NRT2.1的表达。由此推测,与高氮相比,低氮下苹果幼苗IAA从地上部向根系极性运输增加,Z和ZR含量降低,叶片ABA含量积累,根系NRT1.1和NRT2.1相对表达量提高,可能是苹果幼苗在不同NO_3~--N浓度下生长差异的重要原因。  相似文献   

2.
硝态氮是作物吸收无机氮素的主要形态,硝酸盐转运蛋白2(nitrate transporter 2,NRT2)作为高亲和性的转运蛋白,以硝酸盐作为特异性底物,在可利用的硝酸盐受限时,高亲和性转运系统被激活,在硝酸盐吸收、转运过程中发挥着重要作用。大多数NRT2不能单独转运硝酸盐,需在硝酸盐同化相关蛋白2(nitrate assimilation related protein 2,NAR2)的协助下才能完成硝酸盐的吸收或转运。作物氮利用效率受环境条件影响,品种间存在差异,因此培育高氮素利用效率品种有重大意义。高粱(Sorghum bicolor)具有耐贫瘠特性,对土壤中的氮素吸收和利用效率较高。本研究结合高粱基因组数据库对NRT2/3基因家族成员基因结构、染色体定位、理化性质、二级结构与跨膜结构域、信号肽与亚细胞定位、启动子区顺式作用元件、系统进化、单核苷酸多态性(single nucleotide polymorphism,SNP)的识别与注释及选择压力进行了全面分析。通过生物信息学分析,筛选出5个NRT2s(命名为SbNRT2-1a、2-1b、SbNRT2-2–4)基因和2个NAR2s(SbNRT3-1–2)基因,较谷子略少。分布在3条染色体上,分为4个亚家族,同一亚族中基因结构高度相似;高粱NRT2/3亲水性平均值均为正值,表明均为疏水性蛋白;α-螺旋和无规则卷曲占二级结构总量的比例大于70%;亚细胞定位均在质膜上,其中NRT2s蛋白不含信号肽,NRT3s蛋白含信号肽;进一步对其跨膜结构域进行分析,发现NRT2s家族成员跨膜结构域个数均大于10个,而NRT3s家族成员跨膜结构域个数为2个;高粱与玉米(Zea mays)NRT2/3s的共线性较好;蛋白结构域显示存在MFS_1和NAR2蛋白结构域,可执行高亲和力硝酸盐转运;系统进化树分析可知,高粱与玉米和谷子的NRT2/3基因亲缘关系更近;基因启动子顺式作用元件分析发现,SbNRT2/3基因的启动子区均具有数个植物激素和逆境应答元件,可以响应高粱生长和环境变化;基因表达热图显示低氮条件下在根诱导表达的是SbNRT2-1a、SbNRT2-1b和SbNRT3-1,推测可在高粱根部表达并调控对硝酸盐的吸收或转运过程。在SbNRT2-4和SbNRT2-1a等发现多个非同义SNP变异;选择压力分析表明,高粱NRT2/3基因家族在进化过程中受纯化选择作用。SbNRT2/3基因表达及蚜虫侵染影响与基因在不同组织中的表达分析结果一致,SbNRT2-1b和SbNRT3-1在感染蚜虫品系5-27sug根部表达显著,高粱蚜虫侵染叶片显著降低了SbNRT2-3、SbNRT2-4和SbNRT3-2的表达水平。本研究初步对高粱全基因组NRT2/3基因家族进行鉴定、表达与DNA变异分析,为高粱氮高效研究提供了基础。  相似文献   

3.
以大田试验获得的大麦氮敏感基因型BI-45为材料,利用溶液培养方法,测定了苗期株高、根长、叶绿素含量、含氮量、谷氨酰胺合成酶和硝酸还原酶活性,以及与氮代谢相关的基因(GSI-GSl-2、GSI-3、GS2、Narl、NRT2.J、NRT2-2、NRT2-3和NRT2-4)的表达。结果表明:相对于正常供氮,氮饥饿胁迫下,BI-45根和叶中的氮素利用率提高,含氮量降低,叶绿素含量减少,根冠比增加;叶片中的谷氨酰胺合成酶活性和硝酸还原酶的活性高于根,但是,与叶中的相比,根中的谷氨酰胺合成酶活性升高及硝酸还原酶活性降低的差异性更显著;与正常供氮相比,氮饥饿处理下,根中基因傩家族,基Narl和硝酸盐转运蛋白基因NRT2家族的相对表达量皆达到显著性差异,其中GSl-I、GSl-2和NRT2-2在苗期大麦氮饥饿处理下表现尤为突出,并且在6h都有上调表达。  相似文献   

4.
通过转录组测序,获得在接种 ERM 真菌的云锦杜鹃苗根系中显著差异表达的基因,其中硝酸根转运蛋白(NRT )基因是硝态氮吸收转运的关键基因。利用生物信息学方法,分析云锦杜鹃根转录组的硝酸根转运蛋白(NRT )基因序列,对其推导的氨基酸的理化性质、亲水性/疏水性、跨膜结构、导肽、二级结构、高级结构进行预测,并对硝酸根转运蛋白的氨基酸做进化发育分析。为进一步了解 NRT 基因在云锦杜鹃接种苗根系氮素吸收的作用奠定了基础。  相似文献   

5.
茶树硝酸盐转运蛋白基因的克隆和表达分析   总被引:1,自引:0,他引:1  
硝酸盐转运蛋白(NRT)是植物吸收和利用硝态氮的一种关键蛋白。运用RACE技术从茶树中扩增出NRT基因的cDNA,并利用实时荧光定量PCR检测了CsNRT基因在不同茶树器官与品种之间的差异表达。结果表明:CsNRT基因的cDNA全长2 061 bp,开放阅读框为1 818 bp,编码含由605个氨基酸组成的蛋白质,GenBank登录号为KJ160503,属于NRT2基因家族。CsNRT为组成型基因,对不同处理的水培茶苗进行定量表达分析显示,该基因在根、茎、叶中都有表达,其中在根部的表达水平最高,1.0 mmol·L-1的NO3-可诱导其表达量上升7.53倍。不同茶树品种中CsNRT基因的表达也有较大差异,‘龙井长叶’和‘凫早2号’的表达量较高,前者强烈响应0.5和1.0 mmol·L-1 NO3-的诱导,后者的响应浓度为1.0和2.0mmol·L-1,而‘舒茶早’在各浓度下的表达差异不明显。  相似文献   

6.
为了阐明小麦硝态氮转运蛋白(nitrate transporters,NRT)TaNRT2.1及辅助蛋白TaNAR2.1的硝态氮转运功能,本研究构建了TaNRT2.1单基因(单超)与TaNRT2.1+TaNAR2.1双基因超表达载体(双超),通过农杆菌介导法转化野生型拟南芥,利用潮霉素筛选与PCR鉴定分别获得了3个单超与2个双超的转基因拟南芥纯合株系。通过研究转基因拟南芥的硝态氮吸收动力学及氮含量发现:在硝态氮浓度1 mmol·L~(-1)时,仅双超能够显著提高拟南芥的硝态氮吸收速率;硝态氮浓度1 mmol·L~(-1)时,不论单超还是双超均不能提高拟南芥的硝态氮吸收速率。低氮(0.1 mmol·L~(-1) NO_3~-)条件下,2种转基因拟南芥的生长状况和氮吸收与野生型相比均无显著差异;而在高氮(10 mmol·L~(-1) NO_3~-)条件下,单超提高了拟南芥的角果重和植株生物量,双超则显著提高了拟南芥的生物量、根系生长和总吸氮量。这些结果表明,TaNRT2.1转运蛋白需与辅助蛋白TaNAR2.1联合才能调控拟南芥对硝态氮的转运。  相似文献   

7.
水通道蛋白是(aquaporins,AQPs)介导水分子被动跨膜转运的内在膜蛋白。本研究发现在低温胁迫下斑马鱼胚胎成纤维细胞(ZF4)中aqp1b基因相对表达水平显著升高,为研究低温胁迫下斑马鱼水通道蛋白(aqp1b)基因的表达调控机制,采用染色质免疫共沉淀-实时荧光定量PCR(Ch IP-q PCR)法和甲基化DNA免疫沉淀-实时荧光定量PCR(Me DIP-q PCR)法,研究低温压力下ZF4细胞中aqp1b基因启动子区域组蛋白修饰和DNA甲基化水平的变化。Ch IP-q PCR分析表明:低温处理5 d后aqp1b基因启动子区域H3K4me3(激活性组蛋白修饰标志)修饰水平比对照组显著提高3.1倍(p0.05);而H3K27me3(抑制性组蛋白修饰标志)修饰水平比对照组显著降低2.1倍(p0.01)。Me DIP-q PCR分析表明:低温处理组aqp1b基因启动子区域甲基化水平比对照组显著下调7.3倍(p0.01)。研究表明,低温压力下ZF4细胞中aqp1b基因的表达受到了表观遗传机制调控以适应低温压力。  相似文献   

8.
硝酸盐转运蛋白(nitrate transporter,NRT)是植物识别、吸收和转运硝酸盐的关键蛋白,对促进作物根系发育、提高产量具有重要作用。通过筛选水生植物,利用NRT蛋白的保守区设计简并引物,并通过PCR和RACE技术,首次从矮珍珠(Glossostigma elatinoides)中克隆得到GeNRT2.1基因。进化分析结果表明,GeNRT2.1与烟草NRT2.1在进化关系上距离最近。qRT-PCR结果表明,GeNRT2.1在矮珍珠根中表达量最高,其次是叶和茎,此外,低浓度硝酸盐(0.5 mmol·L-1)处理后,GeNRT2.1在根、叶、茎中的表达量分别是高浓度硝酸(2 mmol·L-1)处理后的1.89、1.93和2.07倍。功能互补实验发现,GeNRT2.1能使缺陷型酵母Δynr恢复生长,具有硝酸盐转运蛋白的功能。通过丰富NRT基因资源,以期为培育氮肥高效利用转基因作物,发展绿色农业,保证我国的粮食安全和环境安全提供理论依据。  相似文献   

9.
蔡霞  龙健儿 《动物学研究》2007,28(5):470-476
目前认为克隆效率低的主要原因是供体核的不完全重编程导致发育过程中一些重要的基因异常表达。运用DNA甲基化转移酶抑制剂5'-脱氧胞苷(5'-azacytidine,5'-aza)处理MDBK细胞(牛肾上皮细胞),并通过实时荧光定量PCR方法对lgf-2r基因的表达进行了定量分析;在此基础上,应用亚硫酸盐甲基化测序法检测正常牛及克隆牛脑、肺、心、肝组织lgf-2r印迹调控区DMR2(DNA differentially methylated region,DMR)及非印迹调控区3'-UTR(3'-untranslated region,UTR)的DNA甲基化水平。研究发现,5'-aza处理MDBK细胞后,lgf-2r基因的表达上调。正常牛各组织中lgf-2rDMR2区的DNA甲基化程度差异较大,3'-UTR区较稳定;与正常牛相比,克隆牛DMR2区的甲基化程度变化较大,3'-UTR区无显著性变化。结果表明,DNA甲基化修饰影响lgf-2r基因的表达。正常牛不同组织中lgf-2r基因DMR2区的DNA甲基化程度不同,提示lgf-2r基因的印迹调控方式在不同组织中可能不同。克隆牛发育过程中,调控lgf-2r基因印迹的DMR2表观结构被明显改变,而非印迹调控区3'-UTR则无明显变化,提示lgf-2r基因印迹调控区被破坏,很可能是导致克隆牛发育异常的一个重要原因。  相似文献   

10.
DNA甲基化对牛Igf-2r表达的影响及其在克隆牛发育中的作用   总被引:1,自引:0,他引:1  
蔡霞  龙健儿 《动物学研究》2007,28(5):470-476
目前认为克隆效率低的主要原因是供体核的不完全重编程导致发育过程中一些重要的基因异常表达。运用DNA甲基化转移酶抑制剂5′-脱氧胞苷(5′-azacytidine,5′-aza)处理MDBK细胞(牛肾上皮细胞),并通过实时荧光定量PCR方法对Igf-2r基因的表达进行了定量分析;在此基础上,应用亚硫酸盐甲基化测序法检测正常牛及克隆牛脑、肺、心、肝组织Igf-2r印迹调控区DMR2(DNA differentially methylated region,DMR)及非印迹调控区3′-UTR(3′-untranslated region,UTR)的DNA甲基化水平。研究发现,5′-aza处理MDBK细胞后,Igf-2r基因的表达上调。正常牛各组织中Igf-2r DMR2区的DNA甲基化程度差异较大,3′-UTR区较稳定;与正常牛相比,克隆牛DMR2区的甲基化程度变化较大,3′-UTR区无显著性变化。结果表明,DNA甲基化修饰影响Igf-2r基因的表达。正常牛不同组织中Igf-2r基因DMR2区的DNA甲基化程度不同,提示Igf-2r基因的印迹调控方式在不同组织中可能不同。克隆牛发育过程中,调控Igf-2r基因印迹的DMR2表观结构被明显改变,而非印迹调控区3′-UTR则无明显变化,提示Igf-2r基因印迹调控区被破坏,很可能是导致克隆牛发育异常的一个重要原因。  相似文献   

11.
硝酸盐是植物从土壤中吸收的重要无机氮素形态。植物为适应含有不同浓度NO3-的土壤环境,进化出了高亲和硝酸盐转运系统(HATS)和低亲和硝酸盐转运系统(LATS),两个基因家族NRT1和NRT2家族分别参与了LATS和HATS的NO3-的吸收和转运。近年来,随着分子生物学技术和植物基因组学的快速发展,研究人员克隆出了大量参与硝酸盐吸收和转运的基因,并对这些基因的功能进行了深入研究,逐渐形成了复杂的硝酸盐调控网络。综述了植物中硝酸盐转运蛋白基因的克隆、表达及调控,并对进一步的研究作了展望,这些结果对于理解植物硝酸盐吸收的调控机制具有重要作用。  相似文献   

12.
为筛选鼻咽癌的甲基化沉默基因,采用二维凝胶电泳(2-DE)技术分离甲基转移酶抑制剂5-杂氮-2'-脱氧胞苷(5-aza-2-dC)处理与未处理鼻咽癌细胞5-8F的蛋白质,PDquest图像分析软件识别差异蛋白质点,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)鉴定差异蛋白质.然后采用Western blotting和RT-PCR检测差异蛋白质nm23-H1在药物处理与未处理5.8F细胞中的表达水平,采用甲基化特异性PCR(MS-PCR)检测nm23-H1基因在药物处理与未处理5-8F细胞中的甲基化水平.建立了5-aza-2-dC处理与未处理5.8F细胞蛋白质的2-DE图谱,识别了49个差异表达的蛋白质点,鉴定了33个差异表达的蛋白质,其中包括rim23.H1在内的15个蛋白质在5-aza-2-dC处理后的5-8F细胞中表达上调,而18个蛋白质表达下调.Western blotting和RT-PCR结果显示,nm23-H1在5-aza-2-dC处理5-8F细胞后表达上调,MS-PCR结果显示,在5-aza-2-dC处理5-8F细胞后nm23-H1基因甲基化水平下降,结果证实,nm23-H1基因是5-8F细胞中的甲基化沉默基因.15个5-aza.2-dC处理后表达上调的基因可能是5-8F细胞中的甲基化沉默基因,为筛选鼻咽癌甲基化失活基因提供了科学依据.  相似文献   

13.
为探讨外源NO诱导转基因白桦外源基因表达与基因组DNA甲基化之间的关系,本研究分析了NO供体硝普钠(sodium nitroprusside,SNP)对转基因白桦愈伤组织中外源基因BGT转录的影响,并对此过程中基因组DNA甲基化水平、甲基转移酶基因DRM、MET表达量及生理生化指标进行研究。结果表明:2 mmol·L-1SNP处理后,转基因白桦防御酶活性、丙二醛(MDA)含量显著升高,表明高浓度NO对白桦细胞正常生命活动产生了伤害;甲基转移酶DRM和MET基因上调表达,基因组DNA甲基化水平由10.6%增加到16.5%,外源基因BGT表达量在6 h时显著增加,3 d时仅为对照的0.46倍,说明转基因白桦外源BGT基因的表达对高浓度NO响应明显且受基因组甲基化水平的影响。本研究揭示了转基因白桦外源BGT基因和甲基转移酶MET、DRM基因对高浓度NO的响应模式,分析了基因组甲基化水平及生理生化特征的变化,为转基因植物生长发育的表观遗传调控和外源基因表达影响机制的研究奠定基础。  相似文献   

14.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

15.
水培硝态氮浓度对冬小麦幼苗氮代谢的影响   总被引:3,自引:1,他引:2  
门中华  李生秀 《广西植物》2010,30(4):544-550
以Hoagland营养液为培养基质,以冬小麦为试材,动态测定高(含NO3--N15mmol·L-1)、中(含NO3--N7.5mmol·L-1)、低(含NO3--N2.5mmol·L-1)三种氮水平处理条件下硝态氮的吸收和累积、硝酸还原酶活性、铵态氮含量、小麦吸氮量及根系活力,分析不同供氮水平对冬小麦硝态氮吸收、还原、转运的影响,探讨不同供氮条件下,植物地上、地下部分硝态氮代谢的变化。结果表明:水培条件下,营养液NO3-的消耗量、pH变化、植株全氮以及根系活力均能较好地反映不同氮水平对植株硝态氮代谢的影响;高氮条件下植物体内NO3-进一步同化较中氮弱,冬小麦植株积累了较多的NO3-,而非过多的吸收营养液中的NO3-。不同氮浓度处理下,NO3-的供应与植株NRA间无相关关系,根系与地上部的变化曲线不同;NO3-供应浓度高时,植物地上部是主要同化部位;低浓度时根部是主要同化部位。虽然NO3-是一种安全的氮源,但供应过高则抑制体内硝态氮进一步同化,而供应过低,植物吸收NO3-量不足、根系活力下降,不利于小麦幼苗氮素营养。  相似文献   

16.
基因组DNA去甲基化能够激活沉默基因,改变次级代谢产物谱,是一种全新的菌种改良途径。利用不同浓度的DNA甲基化酶抑制剂5-氮杂胞苷(5-aza C)处理蛹虫草菌株CM-L1,降低基因组DNA甲基化水平,高效液相色谱筛检得到改良株LB-C3和LD-A7,菌丝体中虫草素含量分别提升127%和144.3%。LD-A7不能形成子实体,推测与关键的DNA甲基化修饰作用被改变有关。经5次继代培养后,以虫草素含量为指标考察性状稳定性。随传代次数增加,基因组中甲基化的DNA含量增加,液体发酵菌丝体中的虫草素含量均显著降低,但是子实体中虫草素含量非常稳定,改良的菌株更适合栽培生产而非工业发酵。  相似文献   

17.
该研究以马铃薯双单倍体‘DM’为材料,克隆到高亲和性硝态氮转运蛋白基因StNRT2.1的全长cDNA(JGI登录号PGSC0003DMT400002924),并对其进行表达模式和生物信息学分析,为深入探索StNRT2.1基因的生物学功能以及提高马铃薯对氮素的利用效率奠定理论基础。结果表明:(1)通过同源克隆与PCR扩增获得StNRT2.1基因cDNA全长片段,并构建pCEGFP-StNRT2.1表达载体;测序结果显示其实际所编码的蛋白质序列与数据库中目的基因蛋白质序列完全一致,表明成功克隆到StNRT2.1基因且未出现错义突变。(2)StNRT2.1基因位于马铃薯第11号染色体,cDNA序列全长1 593 bp,编码530个氨基酸,预测蛋白相对分子质量约为57.60 kD,理论等电点为9.36。(3)生物信息学分析显示,StNRT2.1由20种氨基酸组成,其中甘氨酸(Gly)所占比例最多,达到10.8%,并且主要由228个α-螺旋、27个β-折叠、87个延伸链和188个无规则卷曲构成;StNRT2.1存在功能保守结构MFS_1(PF07690)和12个跨膜螺旋结构域,且N端和C端均位于细胞膜内; StNRT2.1位于质膜上且不具有信号肽,可能为非分泌型膜蛋白。(4)以氮充足(7.5 mmol/L)水平作为对照,马铃薯幼苗经无氮(0 mmol/L)和低氮(0.75 mmol/L)处理3周后呈现出叶片发黄及植株矮化等明显表型差异。(5)qRT-PCR结果显示,在无氮条件下,马铃薯根组织中StNRT2.1基因表达量升高3.98倍,说明StNRT2.1可能为诱导型高亲和转运蛋白。  相似文献   

18.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   

19.
目的:探究不同乳腺癌细胞(MCF-7、MDA-MB-231)中miR-21与DNA甲基化相互调节作用。方法:将荧光标记的miR-21抑制剂及阴性对照瞬时转入MCF-7、MDA-MB-231细胞中,用荧光显微镜观察其转染效率,以Real-time PCR检测miR-21的敲低水平,并以bisulfite-q MSP法检测基因组DNA甲基化水平。同时,以2.5μmol/L DNA甲基化酶抑制剂5-AZA处理细胞72 h,以单纯二甲基亚枫(DMSO)处理做为阴性对照,观察DNA甲基化改变对miR-21表达水平的影响,接着以Western blot检测miR-21下游基因人第10号染色体缺失的磷酸酶及张力蛋白同源基因(PTEN)、蛋白激酶B(AKT)蛋白的表达水平。结果:miR-21抑制剂可敲低MCF-7细胞中miR-21的表达水平(P0.01),并引起基因组DNA甲基化水平的显著升高以及DNA甲基化转移酶Dnmt1、Dnmt3a以及Dnmt3b的普遍升高(P0.05,P0.01)。而在MDA-MB-231细胞中瞬转miR-21抑制剂则引起miR-21表达水平的小幅度升高(P0.01)以及整体DNA甲基化水平的降低(P0.05),并伴随有Dnmt3a的升高及Dnmt3b的降低。使用5-AZA处理后发现,其可显著上调MCF-7以及MDA-MB-231细胞中miR-21的表达(P0.01),并引起其下游基因PTEN在MCF-7细胞内的表达升高,进而下调AKT的蛋白水平。结论:瞬转miR-21抑制剂对MCF-7与MDA-MB-231细胞DNA甲基化水平的调节截然相反,而DNA甲基化的降低则可使miR-21的表达一致上调。本研究可为以后不同类型乳腺癌的临床治疗提供一定的实验依据。  相似文献   

20.
用RT-PCR和RACE技术在NO3-诱导处理的小麦(Triticum aestivum L.)根中克隆到一个硝酸根转运蛋白基因的cDNA,命名为TaNRT2.3(GenBank登录号AY053452).序列分析表明,TaNRT2.3全长1 744 bp,其中含有1 521bp的ORF,编码507个氨基酸,具有12个跨膜区,属于MFS超基因家族中的NNP家族.TaNRT2.3与其他植物中已知的NRT2具有很高的同源性.Northern杂交表明:TaNRT2具有在根中表达的组织特异性,而在叶中未检测到.TaNRT2的表达受NO3-诱导,在含NH4 介质中不表达.NO3-在低浓度(5~200μmol/L)和高浓度(2.0 mmol/L)时均起作用.通过研究小麦在0.2 mmol/LNO3-条件下TaNRT2的表达水平及对NO3-的吸收效率,表明TaNRT2在小麦高效吸收NO3-方面起着重要的作用.分根实验表明植物中N循环本身可以作为吸收N的调节信号.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号