首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions.On leaf surface,stomata formed by pairs of guard cells mediate gas exchange,water transp...  相似文献   

3.
Reactive oxygen signaling and abiotic stress   总被引:11,自引:0,他引:11  
  相似文献   

4.
Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.  相似文献   

5.
磷脂酸在植物中的第二信使功能   总被引:1,自引:0,他引:1  
磷脂酸(phosphatidic acid, PA)是植物中重要的细胞内信号分子,被称为“脂质第二信使”,特别是几个PA的作用靶点已被克隆和鉴定.植物体内PA的产生可以通过磷脂酶C和D两条信号通路,前者与甘油二酯激酶协同作用.PA主要由各种生物和非生物胁迫诱导产生,磷脂酸的水平在各种胁迫处理后的几分钟内增强.增强的信号水平通过PA的磷酸化形成甘油二酯焦磷酸而被迅速减弱.本文就PA产生的磷脂酶信号通路,PA在各种胁迫诱导下的产生,PA的作用靶点和作用机理及在植物中的功能等几个方面进行综述.  相似文献   

6.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) constitute key features underpinning the dynamic nature of cell signaling systems in plants. Despite their importance in many aspects of cell biology, our understanding of oxidative and especially of nitrosative signaling and their regulation remains poorly understood. Early reports have established that ROS and RNS coordinately regulate plant defense responses to biotic stress. In addition, evidence has accumulated demonstrating that there is a strong cross-talk between oxidative and nitrosative signaling upon abiotic stress conditions. The goal of this mini-review is to provide latest findings showing how both ROS and RNS comprise a coordinated oxidative and nitrosative signaling network that modulates cellular responses in response to environmental stimuli.Key words: abiotic stress, nitrosative stress, oxidative stress, reactive nitrogen species, reactive oxygen species, signaling  相似文献   

7.
Production of apoplastic reactive oxygen species (ROS), or oxidative burst, is among the first responses of plants upon recognition of microorganisms. It requires peroxidase or NADPH oxidase (NOX) activity and factors maintaining cellular redox homeostasis. Here, PpTSPO1 involved in mitochondrial tetrapyrrole transport and abiotic (salt) stress tolerance was tested for its role in biotic stress in Physcomitrella patens, a nonvascular plant (moss). The fungal elicitor chitin caused an immediate oxidative burst in wild-type P. patens but not in the previously described ΔPrx34 mutants lacking the chitin-responsive secreted class III peroxidase (Prx34). Oxidative burst in P. patens was associated with induction of the oxidative stress-related genes AOX, LOX7, and NOX, and also PpTSPO1. The available ΔPpTSPO1 knockout mutants overexpressed AOX and LOX7 constitutively, produced 2.6-fold more ROS than wild-type P. patens, and exhibited increased sensitivity to a fungal necrotrophic pathogen and a saprophyte. These results indicate that Prx34, which is pivotal for antifungal resistance, catalyzes ROS production in P. patens, while PpTSPO1 controls redox homeostasis. The capacity of TSPO to bind harmful free heme and porphyrins and scavenge them through autophagy, as shown in Arabidopsis under abiotic stress, seems important to maintenance of the homeostasis required for efficient pathogen defense.  相似文献   

8.
植物中参与活性氧调控的基因网络   总被引:4,自引:0,他引:4  
宋莉璐  张荃 《生命科学》2007,19(3):346-352
植物体内活性氧(reactive oxygen species,ROS)是氧化还原反应的必然副产物,具极高的活性和毒性,从而对细胞产生毒害。同时,活性氧作为信号分子对很多生理过程诸如植物生长发育、细胞程序化死亡及生物和非生物胁迫应答起调控作用。植物中ROS双重作用的协调机制目前尚不明确,确定的是细胞中ROS维持于稳定水平需要精细的调节。拟南芥中至少包括152个基因组成的网络参与ROS的调控,该网络具高度的灵活性和互补性。本文综述了ROS网络中鉴定的一些关键基因及细胞学定位和协同作用,ROS信号转导,尤其是叶绿体中ROS信号的调控。  相似文献   

9.
10.
植物细胞活性氧种类、代谢及其信号转导   总被引:6,自引:0,他引:6  
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。  相似文献   

11.
《遗传学报》2022,49(8):748-755
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.  相似文献   

12.
水分代谢是植物基础代谢的重要组成部分,气孔开关精细地调节着植物水分散失和光合作用。气孔运动受到多种因子的调控,保卫细胞内大量的第二信使分子是响应外界刺激、调节保卫细胞代谢方式、改变保卫细胞水势进而引起气孔开关的重要功能组分。细胞内的活性氧就是其中重要的成员之一。保卫细胞中的活性氧包括过氧化氢、超氧阴离子自由基和羟自由基等,这些活性氧可以通过光合作用、呼吸作用产生或通过专门的酶催化合成,在触发下游生理反应、完成信号转导后由专门的酶将其清除。在植物激素(脱落酸、水杨酸)、一氧化氮、质外体钙调素、细胞外ATP等因子调节气孔运动的过程中,活性氧都发挥了介导作用。该文对于近年来活性氧在气孔运动过程中发挥的作用方面的研究进展进行了综述。  相似文献   

13.
Abscisic acid (ABA) regulates key processes relevant to seed germination, plant development, and biotic and abiotic stress responses. Abiotic stress conditions such as drought induce ABA biosynthesis initiating the signalling pathways that lead to a number of molecular and cellular responses, among which the best known are the expression of stress-related genes and stomatal closure. Stomatal closure also serves as a mechanism for pathogen defence, thereby acting as a platform for crosstalk between biotic and abiotic stress responses involving ABA action. Significant advances in our understanding of ABA signal transduction have been made with combination of approaches including genetics, biochemistry, electrophysiology and chemical genetics. Molecular components associated with the ABA signalling have been identified, and their relationship in the complex network of interactions is being dissected. We focused on the recent progress in ABA signal transduction, especially those studies related to identification of ABA receptors and downstream components that lead ABA signal to cellular response. In particular, we will describe a pathway model that starts with ABA binding to the PYR/PYL/RCAR family of receptors, followed by inactivation of 2C-type protein phosphatases and activation of SnRK2-type kinases, and eventually lead to activation of ion channels in guard cells and stomatal closure.  相似文献   

14.
Global switches and fine-tuning-ABA modulates plant pathogen defense   总被引:6,自引:0,他引:6  
Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.  相似文献   

15.
Hyperhydricity can cause significant economic loss for the micro-propagation industry that produces blueberry. In order to predict and control the occurrence of hyperhydricity, better understanding of the anatomical and physiological features of hyperhydric plantlets is required. In this study, we investigated the ultrastructural and physiological changes associated with hyperhydric blueberry plantlets. Compared to normal plantlets, hyperhydric plantlets exhibited reduced cell wall thickness, damaged membrane and guard cell structure, decreased number of mitochondria and starch granule, higher cell vacuolation, more intercellular spaces, and collapse of vascular tissues. In addition, excessive accumulation of reactive oxygen species (ROS) and ethylene, decreased stomatal aperture and water loss, as well as abnormity of stomatal movement were also evident in the hyperhydric plantlets. The results suggested that excessive ethylene and ROS produced in response to the stress arising from in vitro culture could lead to abnormal stomatal closure, causing the accumulation of water in the tissues. This would lead to subsequent induction of oxidative stress (due to hypoxia) and cell damage, especially guard cell structure, eventually giving rise to the symptoms of hyperhydricity. Reducing the content of ethylene and ROS, and protecting the structure and function of the stomata could be considered as potential strategies for inhibiting hyperhydricity or restoring the hyperhydric plants to their normal state.  相似文献   

16.
17.
Plants suffering from abiotic stress are commonly facing an enhanced accumulation of reactive oxygen species (ROS) with damaging as well as signalling effects at organellar and cellular levels. The outcome of an environmental challenge highly depends on the delicate balance between ROS production and scavenging by both enzymatic and metabolic antioxidants. However, this traditional classification is in need of renewal and reform, as it is becoming increasingly clear that soluble sugars such as disaccharides, raffinose family oligosaccharides and fructans – next to their associated metabolic enzymes – are strongly related to stress‐induced ROS accumulation in plants. Therefore, this review aims at extending the current concept of antioxidants functioning during abiotic stress, with special focus on the emanate role of sugars as true ROS scavengers. Examples are given based on their cellular location, as different organelles seem to exploit distinct mechanisms. Moreover, the vacuole comes into the picture as important player in the ROS signalling network of plants. Elucidating the interplay between the mechanisms controlling ROS signalling during abiotic stress will facilitate the development of strategies to enhance crop tolerance to stressful environmental conditions.  相似文献   

18.
An elicitor chitosan (CHT) induces stomatal closure but the mechanism remains to be clarified. A phytohormone salicylic acid (SA) is crucial for elicitor-induced defense signaling in plants. Here we investigated whether endogenous SA is required for CHT signaling in guard cells. In the SA-deficient nahG mutant, treatment of CHT did not induce either apoplastic reactive oxygen species (ROS) production or stomatal closure but co-treatment of CHT and SA induced both apoplastic ROS production and stomatal closure, indicating the involvement of endogenous SA in CHT-induced apoplastic ROS production and CHT-induced stomatal closure. Furthermore, CHT induced transient cytosolic free calcium concentration increments in the nahG mutant in the presence of exogenous SA but not in the absence of exogenous SA. These results provide evidence that endogenous SA is a crucial element in CHT-induced stomatal closure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号