首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using data from the literature, a method is adopted for determining the empirical composition and the unit carbon formula for dried Escherichia coli K-12 cells by summing the quantities of C, H, O, N, P, and S in each of the major classes of macromolecular substances comprising the cellular biomass. With these data and the molar growth yield of cells on succinic acid, equations are written representing the anabolism and catabolism of E. coli K-12 on this quantity of substrate. The enthalpy change accompanying catabolism can be calculated directly using standard enthalpies of formation because there is no term representing cellular substance. The enthalpy change accompanying anabolism is calculated to be very small or zero using microcalorimetric and other data from which the enthalpy of formation of a unit quantity of living cellular substance can be obtained. This indicates that the net enthalpy change accompanying the growth process (anabolism plus catabolism) is the same as that calculated for catabolism alone, in agreement with the same conclusion by several investigators using direct microcalorimetry. The method described here of determining the unit carbon formula and the quantity of ash remaining after cellular combustion is compared to that conventionally used in which cellular P and S is considered either to be negligible or to be a part of the ash. It is concluded that equations representing anabolism and the growth process can be written more accurately using the presently described method, leading to more accurate thermodynamic calculations.  相似文献   

2.
The ΔS of one unit carbon formula weight of Escherichia coli K-12 cells, when grown on succinic acid, was calculated to be ?80.13 J/deg. This value could then be used to calculate the entropy change accompanying the anabolism and metabolism of succinic acid to be 30.82 J/deg and 32.40 J/mol deg, respectively. The entropy of one unit carbon formula weight of dried E. Coli K-12 cells is calculated to be 94.40 J/deg, which when divided by the mass of these cells becomes 3.90 J/g deg. The corresponding entropy of succinic acid is 2.77 J/g deg, making it apparent that the entropy per unit mass of the cells is greater than that of the substrate. It might be thought that because the cells appear to be so much more complex than the substrate, the cells should have a lesser entropy per unit mass than the substrate. That this does not appear to be true leads to the conclusion that the macromolecular organization (informational content?) of the cells contributes only in a very minor way to the total physical entropy of cells. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
We determined the carbon allocation patterns and construction costs of Alocasia macrorrhiza plants grown at different photon flux densities (PFD) as well as the whole-plant carbon gain of these plants at different daily PFDs. Growth at high PFD resulted in thicker leaves with a higher leaf mass per unit area, and increased biomass allocation to petioles and roots, as compared to growth at low PFD. Increased allocation to petioles may have been necessary to support the heavier leaves, whereas increased allocation to roots may have been necessary to supply sufficient water for the higher transpiration rates in high PFD. Root biomass was highly correlated with the daily, whole-plant transpiration rate. Tissue construction costs per unit dry mass were unchanged by acclimation, but, since the mass per unit areas of leaves, roots and petioles all increased, construction costs per unit leaf area were much higher for plants grown at high PFD. On a per unit leaf area basis, daily whole-plant carbon gain measured at high daily PFD was higher in high- than in low-PFD-grown plants. However, on a per unit leaf mass basis, low-PFD-grown plants had a daily carbon gain at least as high as that of high-PFD-grown plants at high daily PFD. At low daily PFD, low-PFD-grown plants maintained an advantage over high-PFD-grown plants in terms of carbon gain because of their larger leaf area ratios. Thus, in terms of carbon gain, low-PFD-grown plants performed better than sun plants at low PFD and as well as high-PFD-grown plants at high PFD, despite their lower photosynthetic capacities per unit area. For high-PFD-grown plants, the higher construction costs per unit leaf area resulted in lower leaf area ratios, which counteracted the advantage of higher photosynthetic rates per unit leaf area.  相似文献   

4.
S. L. Gulmon  C. C. Chu 《Oecologia》1981,49(2):207-212
Summary Plants of Diplacus aurantiacus, a successional shrub common in California chaparral, were grown under controlled conditions in which either quantum flux density or nitrogen availability was varied. Photosynthesis and leaf nitrogen content were determined on a leaf area and a leaf weight basis, and whole plant growth was monitored.There was a direct relationship between photosynthesis and leaf nitrogen content on both area and weight bases. Reduced light intensity of the growth environment resulted in reductions in light-saturated photosynthesis and nitrogen content on an area basis, but not on a weight basis. With reduced nitrogen availability, photosynthesis and leaf nitrogen content per unit leaf weight decreased.Resource use efficiency increased as the resource became more limiting. The results are consistent with a model of plant growth in which net carbon gain of the leaf is maximized. Abbreviations. For brevity, the following set of abbreviations is used in presenting and discussing the results. P/area and N/area are, respectively, photosynthesis and leaf nitrogen content per unit leaf area. P/wt and N/wt are the same quantities per unit leaf dry weight. SLW (specific leaf weight) is dry weight per unit leaf area. RGR (relative growth rate) is the relative rate of increase in shoot dry matter per day  相似文献   

5.
N Matsuo  P M Ross 《Biochemistry》1987,26(7):2001-2009
Bifunctional psoralens react photochemically with DNA to form single-strand adducts and interstrand, chemical cross-links. Cross-link formation is first order with [P], the concentration of added psoralen, when [P] much less than Kd, the psoralen-DNA dissociation constant. DNA molecules containing interstrand cross-links are reversibly bihelical and so are readily detected. It was not heretofore possible to determine cross-link frequency in polydisperse DNA from the mass F of DNA spared cross-linkage. We have derived a statistical relation to calculate cross-link frequency at fixed light exposure and variable [P]. We show here that S, the initial slope of the curve described by -ln F as a function of [P], is proportional to Mw, the weight-average molecular weight of nick-free DNA. The cross-link frequency at any [P] can be determined from k, a constant measured for DNA of known Mw at low cross-linkage. This relation is valid for DNA of any molecular weight distribution. In experiments with uniform length DNA, -ln F (cross-link frequency) increased in simple proportion to [P]. Intact and restriction endonuclease HindIII digested phage lambda DNA molecules have discrete lengths. S for each was proportional to Mw of the twin helix even though the molecular weight distribution of the restriction fragments was skewed. S was proportional to Mw and to the median molecular weight of sheared cellular DNA over a wide range. Also, we found that 1/S was linear with exposure of cellular DNA to gamma radiation. S can therefore be used to calculate L, the average distance between interruptions in the double helix.  相似文献   

6.
Pseudomonas oleovorans was grown in homogeneous media containing n-alkanoic acids, from formate to decanoate, as the sole carbon sources. Formation of intracellular poly(beta-hydroxyalkanoates) was observed only for hexanoate and the higher n-alkanoic acids. The maximum isolated polymer yields were approximately 30% of the cellular dry weight with growth on either octanoate or nonanoate. In most cases, the major repeating unit in the polymer had the same chain length as the n-alkanoic acid used for growth, but units with two carbon atoms less or more than the acid used as a carbon source were also generally present in the polyesters formed. Indeed, copolymers containing as many as six different types of beta-hydroxyalkanoate units were formed. The weight average molecular weights of the poly(beta-hydroxyalkanoate) copolymers produced by P. oleovorans ranged from 90,000 to 370,000. In spite of the higher cell yields obtained with octanoate and nonanoate, the use of hexanoate and heptanoate yielded higher-molecular-weight polymers. These copolyesters represent an entirely new class of biodegradable thermoplastics.  相似文献   

7.
A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity.  相似文献   

8.
The DeltaH(f) (0) unit weight of a complex substance such as a biological macromolecule is almost always obtained by means of combustion analysis. In theory, this can also be done by summing the DeltaH(f) (0) values for the monomers comprising the macromolecule plus the enthalpic energies involved in their polymerization. The enthalpy of formation of one unit-carbon formula weight of dried Escherichia coli K-12 cells was determined by summing the values of the enthalpies of formation of the quantities of monomers in the major classes of macromolecules substances comprising the cellular biomass and the enthalpic energies involved in their polymerizations. To this value was added the enthalpy of formation of the cellular ions in their aqueous standard states, per unit-carbon formula weight of cellular substance and the enthalpy change with respect to the ionization of the protein amino acid side chains. If it is assumed that the cellular fabric is insoluble and that the ions are soluble, the sum of the enthalpies of formation of all the cellular components should closely approximate the enthalpy of formation of one unit-carbon formula weight equivalent of living cells. Using this value, a calculation of the enthalpy change accompanying anabolism shows this latter to be effectively zero, indicating that the heat of growth (anabolism plus catabolism) is equal to that calculated for catabolism alone. This conclusion is in accord with those of several investigators who have used manometry or direct calorimetry.  相似文献   

9.
松属的思茅松(Pinus kesiya var. langbianensis)、云南松(P. yunnanensis)和高山松(P. densata)是组成中国西南不同海拔针叶森林的主要树种,然而这三个树种在发育速度尤其是高生长方面表现出明显的差异。为了弄清引起这些变异的生理和形态学原因,本文将三种松树种植于同一环境下,对其光合作用、生物量分配、生长速率和叶片性状进行了研究。研究发现,与来源于高海拔的树种相比,低海拔的树种有更高的株高、以及更大的干物质重量、相对生长速率、叶质比、茎质比和比叶面积,但叶片氮含量、碳含量和根质比较低。高海拔树种的光合速率并不明显低于低海拔树种。相对生长速率和树高均与叶质比呈显著正相关,与根质比负相关,但与最大光合速率没有显著关系。这些结果表明,生物量的分配式样和长期的形态特性能够更好地预测不同海拔松树的生长表现。  相似文献   

10.
An examination is made of five methods for obtaining values of the enthalpy of formation of a unit mass of living Escherichia coli K-12 cells. The values obtained by these methods ranged from -88.95 kJ to -99.55 kJ, the gross average being 96.01 kJ, per unit carbon formula weight equivalent of living, hydrated cells. Although theoretically the growth of this organism in a microcalorimeter should provide the best value, the value obtained by this method (-88.95 kJ per UCFW equivalent) is not in close agreement with those of the other four methods, the values from which form a cluster averaging -97.8 +/- 1.0 kJ (-23.4 +/- 0.2 kcal)/UCFW equivalent. Calculations using this value indicate that the enthalpy change accompanying anabolism (as this is represented) is zero, or very nearly so, and that the heat of growth is that from catabolism alone.  相似文献   

11.
The effects of P deficiency on growth, N(2)-fixation and photosynthesis in white clover (Trifolium repens L.) plants were investigated using three contrasting relative addition rates of P, or following abrupt withdrawal of the P supply. Responses to a constant below-optimum P supply rate consisted of a decline in N(2)-fixation per unit root weight and a small reduction in the efficiency with which electrons were allocated to the reduction of N(2) in nodules. Abrupt removal of P arrested nodule growth and caused a substantial decline in nitrogenase activity per unit root weight, but not per unit nodule mass. Similarly, the rate of photosynthesis per unit leaf area was unaffected by abrupt P removal, whereas CO(2) acquisition for the plant as a whole decreased due to a decline in total leaf area, leaf area per unit leaf weight and utilization of incoming radiation. These changes followed the decline in tissue P concentrations. The ratio between CO(2)-fixation and N(2)-fixation was maintained under short-term P deprivation but increased under long-term low P supply, indicating a regulatory inhibition of nodule activity following morphological and growth adjustments. It is concluded that N(2)-fixation did not limit the growth of clover plants experiencing P deficiency. A low P status induced changes in the relative growth of roots, nodules and shoots rather than changes in N and/or C uptake rates per unit mass or area of these organs.  相似文献   

12.
Leaves of Quercus coccinea, Q. alba, and Pinus rigida were collected at six dates during the growing season and analyzed for N, P, K, Ca, Mg, Fe, S, and Na. Leaf weights per unit of leaf area (or length) were determined for the same period. Quercus coccinea and Q. alba leaves increased in weight per unit area by about 30 % and 50 %, respectively. First-year pine leaves increased in weight per unit length by about 65 %. During the second year the weight of pine leaves changed little. Two broad patterns in the nutrient content of leaves were apparent when nutrient content was expressed on the basis of leaf area rather than leaf weight. N, P, and K concentrations increased to a peak in mid- or late summer and declined abruptly just prior to abscission. Concentrations of other elements tended to rise slowly throughout the life of the leaves in all three species. The differences among nutrients and among species support the hypothesis that differential partitioning of the nutrient pool occurs as a result of evolutionary adaptation. The changes in weight of leaves per unit area and in nutrient content during the growing season are important for studies of net primary production and in appraisals of the cycling of nutrients. Least distortion of nutrient relationships occurs when area or length of leaf is used as the basis for expression of nutrient content.  相似文献   

13.
We analyzed the cellular content of C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd, and Mo in 15 marine eukaryotic phytoplankton species in culture representing the major marine phyla. All the organisms were grown under identical culture conditions, in a medium designed to allow rapid growth while minimizing precipitation of iron hydroxide. The cellular concentrations of all metals, phosphorus, and sulfur were determined by high‐resolution inductively coupled plasma mass spectrometry (HR‐ICPMS) and those of carbon and nitrogen by a carbon hydrogen nitrogen analyzer. Accuracy of the HR‐ICPMS method was validated by comparison with data obtained with 55Fe radioactive tracer and by a planktonic reference material. The cellular quotas (normalized to P) of trace metals and major cations in the biomass varied by a factor of about 20 among species (except for Cd, which varied over two orders of magnitude) compared with factors of 5 to 10 for major nutrients. Green algae had generally higher C, N, Fe, Zn, and Cu quotas and lower S, K, Ca, Sr, Mn, Co, and Cd quotas than coccolithophores and diatoms. Co and Cd quotas were also lower in diatoms than in coccolithophores. Although trace element quotas are influenced by a variety of growth conditions, a comparison of our results with published data suggests that the measured compositions reflect chiefly the intrinsic (i.e. genetically encoded) trace element physiology of the individual species. Published field data on the composition of the planktonic biomass fall within the range of laboratory values and are generally close to the approximate extended Redfield formula given by the average stoichiometry of our model species (excluding the hard parts): While clearly this elemental stoichiometry varies between species and, potentially, in response to changes in the chemistry of seawater, it provides a basis for examining how phytoplankton influence the relative distributions of the ensemble of major and trace elements in the ocean.  相似文献   

14.
Loss of genomic rDNA has been associated with cellular and organismal ageing. The rDNA locus in humans comprises multiple copies of the 5.8S, 28S and 18S genes. Aim of the present study was to test the effect of aging on the copy number of the three rDNA genes individually in post-mitotic human tissue. We utilized real time polymerase chain reaction relative quantification to measure the copy number of 5.8S, 28S and 18S rDNA genes individually. We obtained adipose tissue from 120 male individuals aged from 9 to 94 years. The available data of each subject corresponding to the time of tissue sampling included: age, height, weight and calculated body mass index. Each rDNA gene was directly tested with Pearson correlation against age and body mass index. We found a significant negative correlation of the gene copy of 5.8S (P < 0.001) and 28S (P < 0.003) with age. Interestingly 18S gene copy displayed a different pattern with no statistically significant correlation with age. Conversely, we observed a significant negative correlation of the 18S gene copy with body mass index (P = 0.004) and a marginally non-significant negative correlation of the 5.8S (P = 0.097) gene copy with body mass index. In summary our results indicate that the rDNA recombination events in humans can be differentially targeted and regulated in response to ageing and/or fat accumulation. The proposed model generates possible implications regarding the effects of each rDNA gene loss in cell function as well as the mechanism of recombination targeting.  相似文献   

15.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征   总被引:5,自引:0,他引:5  
刘宏伟  刘文丹  王微  柴捷  陶建平 《生态学报》2015,35(12):4071-4080
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。  相似文献   

16.
Kusumi  Kensuke  Hirotsuka  Shoko  Shimada  Hiroshi  Chono  Yoko  Matsuda  Osamu  Iba  Koh 《Journal of plant research》2010,123(4):617-622
Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.  相似文献   

17.
One hundred eighty sexually mature Saguinus mystax were imported from Peru in six lots over a period of 1 year. Within 1 year after arrival, the mortality was 60% and the majority of the tamarins showed signs similar to "wasting marmoset syndrome" (WMS). In an effort to improve the survival rate, an open formula diet replaced the commercial closed formula diet that had been fed since arrival of the tamarins. The open formula diet contained 26.2% crude protein, 12.3% ether extract, 43.3% nitrogen free extract and 5.9% crude fiber on a dry matter basis. The diet was evaluated on the basis of palatability, weight gain, mortality, digestibility, nitrogen balance, serum biochemical parameters and blood counts. The mean daily consumption on an as-is basis was 44.8g or 335 Kcal gross energy/Kg of body wt./day. During the 3 month open formula diet evaluation period average weight increased by 56g (p less than .05), mortality decreased demonstratively, and alopecia and chronic diarrhea were nearly eliminated. Mean daily gross energy intake for S. mystax (335 Kcal/Kg of body wt/day) was substantially greater than previously reported values for callitrichids. WMS signs observed in the S. mystax colony were controlled by providing what appears to be an adequate diet.  相似文献   

18.
Continuous cultures of Merismopedia tenuissima Lemmerman, limited by phosphorus, nitrogen, sulfur, or carbon, were compared to non limited batch cultures by two methods. The cellular content of photosynthetic pigments (chlorophyll and phycocyanin) was found to decrease in all nutrient limited cultures, except for the carbon limited culture. The ratio of carbohydrate to protein was 4- to 7-fold higher in P, N or S limited cultures than in non-limited or C limited cultures. The macromolecular products of photosynthesis were determined in samples to which NaH14CO3 was added. Relative incorporation into protein decreased in P or N limited cultures, increased accumulation of low molecular weight compounds was found in S and P limited cultures, and little change was noted in C limited cultures as compared to non-limited cultures. Although relative incorporation into protein was significantly greater at 20μEin·m?2·s?1 light intensity than at 180 μEin·m?2.s?1 in non-limited cultures, this effect was abolished in all nutrient limited cultures. These results suggest that measurement of the cellular carbohydrate to protein ratio and the products of photosynthesis would be useful in the analysis of algal population dynamics in nature.  相似文献   

19.
测定槐树实生树和嫁接树叶片的光合光响应特性、比叶重和叶绿素含量及枝梢生长的结果表明,嫁接树枝梢基径和高度增长趋势与实生树一致,但嫁接树一次、二次梢基径和高度增长量均大于实生树。嫁接树的最大净光合速率、光饱和点、比叶重和单位重量的叶绿素含量均显著高于实生树,高的光合能力与其单位面积叶片重量增加和单位重量叶绿素含量增高有关。嫁接槐树的类胡萝卜素与叶绿素比值高于实生槐树,叶绿素a,b比值和单位重量类胡萝卜素含量显著高于实生槐树,表明其对强光的适应性强。  相似文献   

20.
Evolutionary engineered polyhydroxyalkanoate (PHA) synthases from Pseudomonas sp. 61-3 enhance PHA accumulation and enable the monomer composition of PHAs to be regulated. We characterized a newly screened Ser477Arg (S477R) mutant of PHA synthase by in vivo analyses of P(3-hydroxybutyrate) [P(3HB)] homopolymer and P(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] copolymer productions in the recombinants of Escherichia coli. The results indicated that the S477R mutation contributed to a shift in substrate specificity to smaller monomers containing a 3HB unit rather than to an enhancement in catalytic activity. Multiple mutations of S477R with other beneficial mutations, for example, Ser325Cys, exhibited synergistic effects on both an increase in PHA production (from 9 wt % to 21 wt %) and an alteration of substrate specificity. Furthermore, the effects of complete amino acid substitutions at position 477 were characterized in terms of in vivo PHA production and in vitro enzymatic activity. The five mutations, S477Ala(A)/Phe(F)/His(H)/Arg(R)/Tyr(Y), resulted in a shift in substrate specificity to smaller monomer units. The S477Gly(G) mutant greatly enhanced activity toward all different sizes of substrates with carbon numbers ranging from 4 to 12. These results indicated that the residue 477 contributes to both the catalytic activity and substrate specificity of PHA synthase. In recombinant E. coli, the S477A/F/G/H/R/Y mutations consistently led to increases (up to 6 times that of wild-type enzyme) in weight average molecular weights of P(3HB) homopolymers. On the basis of our studies, we created a structural feasibility accounting for the mutational effects on enzymatic activity and substrate specificity of PHA synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号