首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the C-terminus of multimodular laminarinase Lic16A from Clostridium thermocellum, four carbohydrate-binding modules (CBM) of family 4 were found. Isolated CBM4_1, CBM4_2, CBM4_3, and CBM4_4 modules and the CBM4_(1-4) tandem were obtained. None of the recombinant proteins had the affinity to soluble ??-1,3-1,4-glucans, laminarin and lichenan, the main specific Lic16A substrates. All modules, except CBM4_4, had the ability to bind bacterial crystalline cellulose, which is atypical of family-4 CBMs. All CBMs 4 of Lic16A had an affinity to xylan, chitin, yeast cell wall ??-glucan, and avicel, while CBM4_3 and CBM4_4 also had an affinity to chitosan. The CBM4_(1-4) tandem had the highest affinity to the ??-glucan, avicel, and pustulan of the yeast cell wall. The CBM4_(1-4) binding constants for these substrates were approximately 100-fold higher than those of its individual modules, which suggests synergy in the process of absorbing these polysaccharides. This finding helps to explain the evolutionary process of CBM multiplication.  相似文献   

2.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

3.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

4.
An agar-degrading bacterium, strain SY12, was identified as the genus Janthinobacterium, which is a member of the class Betaproteobacteria. A β-agarase gene agaY was cloned from SY12, and it is the first reported agarase from the Betaproteobacteria. AgaY consisted of 1,338 bp encoding 445 amino acid residues, and it was assigned to GH16 family. AgaY has an N-terminal secretary leader peptide preceding a GH16 catalytic domain and a CBM13 carbohydrate binding module. The recombinant agarase AgaY overexpressed in Escherichia coli displayed a molecular mass of 50.2 kDa and the optimum temperature and pH for the activity of the enzyme was 40°C and pH 7.0, respectively. It degraded agarose to give neoagarotetraose and neoagarobiose as the main products. Interestingly, in contrast to other agarases of GH16, the enzymatic activity of AgaY is Na+ and Ca2+ independent.  相似文献   

5.
Abstract

The gene encoding CtCBM6B of Clostridium thermocellum α-L-arabinofuranosidase (Ct43Araf) was cloned in pET-21a(+) vector, over-expressed using Escherichia coli BL-21(DE3) cells and purified by immobilized metal-ion affinity chromatography (IMAC). The recombinant CtCBM6B showed a molecular size close to 15 kDa by SDS-PAGE analysis, which was close to the expected size of 14.74 kDa. The ligand-binding affinity of CtCBM6B was assessed against ligands for which the catalytic enzyme, Ct43Araf showed maximum activity. The affinity-gel electrophoresis of CtCBM6B with rye arabinoxylan showed lower equilibrium association constant (Ka, 4.0% C? 1), whereas, it exhibited higher affinity (Ka, 19.6% C? 1) with oat spelt xylan. The ligand-binding analysis of CtCBM6B by fluorescence spectroscopy also revealed similar results with low Ka (3.26% C? 1) with rye arabinoxylan and higher affinity for oat spelt xylan (Ka, 17.9% C? 1) which was corroborated by greater blue-shift in case of oat spelt xylan binding. The CtCBM6B binding with insoluble wheat arabinoxylan by adsorption isotherm analysis showed significant binding affinity as reflected by the equilibrium association constant (Ka), 9.4 × 103 M? 1. The qualitative analysis by SDS-PAGE also corroborated the CtCBM6B binding with insoluble wheat arabinoxylan. The protein-melting curve of CtCBM6B displayed the peak shift from 53°C to 59°C in the presence of Ca2+ ions indicating that Ca2+ ions impart thermal stability to the CtCBM6B structure.  相似文献   

6.
Cellulomonas uda efficiently solubilized chitinous substrates with a simple chitinase system composed of an endochitinase, designated ChiA, which hydrolyzed insoluble substrates into long-chain chitooligosaccharides, and an as yet uncharacterized exochitinase activity. ChiA, isolated from culture supernatant fluids, was found to be a glycosylated endochitinase with an apparent molecular mass of approximately 70 kDa and pI of 8.5. The gene encoding ChiA was cloned in Escherichia coli and sequenced, revealing an open reading frame of 1,716 bp encoding a 571-amino-acid protein with a predicted molecular mass of 59.2 kDa. The region upstream of chiA included a conserved –35 hexamer flanked by two direct repeats analogous to those found in many Streptomyces chitinase promoters, and thought to function as binding sequences for regulatory proteins. Analysis of the deduced amino acid sequence showed a modular protein consisting of a signal peptide at its N terminus, a family 2 carbohydrate-binding module (CBM2) that was closely related to the substrate-binding domains of glycosyl hydrolases from distantly related bacteria, and a family 18 glycosyl hydrolase catalytic module related to Streptomyces chitinases. In contrast to the fibronectin type III domains of Streptomyces chitinases, the linker region between modules in ChiA consisted of a long proline- and threonine-rich module, thought to contribute to the glycosylation and flexibility of the mature protein.Abbreviations CBM Carbohydrate-binding module - P-T Proline- and threonine-rich domain - Fn3 Type III repetitive sequences of fibronectin domain - PKD Polycystic kidney disease I domain  相似文献   

7.
A moderately thermophilic bacterium, strain A-471, capable of degrading chitin was isolated from a composting system of chitin-containing waste. Analysis of the 16S rDNA sequence revealed that the bacterium belongs to the genus Ralstonia. A thermostable chitinase A (Ra-ChiA) was purified from culture fluid of the bacterium grown in colloidal chitin medium. Purification of the enzyme was achieved mainly by exploiting its binding to the colloidal chitin. The molecular mass of the enzyme was estimated to be 70 kDa and the isoelectric point approximately 4.7. N-terminal amino acid sequencing revealed a sequence of ADPYLKVAYYP, which had high homology (66% identity) with that of chitinase A1 from Bacillus circulans WL-12. The pH and temperature optima were determined to be 5.0 and 70°C, respectively. The enzyme was classified as a retaining glycosyl hydrolase and was most active against partially N-acetylated chitosans. Its activities towards the partially N-acetylated chitosans, i.e. chitosan 7B, chitosan 8B, and chitosan 9B, were about 11-fold, 9-fold, and 5-fold higher than towards colloidal chitin, respectively. Ra-ChiA cleaved (GlcNAc)6 almost exclusively into (GlcNAc)2. Activation of Ra-ChiA was observed by the addition of 1 mM Cu2+, Mn2+, Ca2+, or Mg2+. Degradation of the partially N-acetylated chitosan produced oligosaccharides with a degree of polymerization ranging from 1–8; these are products that offer potential application for functional oligosaccharide production.  相似文献   

8.
Clostridium thermocellum cellodextrin phosphorylase (CtCDP), a single-module protein without an apparent carbohydrate-binding module, has reported activities on soluble cellodextrin with a degree of polymerization (DP) from two to five. In this study, CtCDP was first discovered to have weak activities on weakly water-soluble celloheptaose and insoluble regenerated amorphous cellulose (RAC). To enhance its activity on solid cellulosic materials, four cellulose binding modules, e.g., CBM3 (type A) from C. thermocellum CbhA, CBM4-2 (type B) from Rhodothermus marinus Xyn10A, CBM6 (type B) from Cellvibrio mixtus Cel5B, and CBM9-2 (type C) from Thermotoga maritima Xyn10A, were fused to the C terminus of CtCDP. Fusion of any selected CBM with CtCDP did not influence its kinetic parameters on cellobiose but affected the binding and catalytic properties on celloheptaose and RAC differently. Among them, addition of CBM9 to CtCDP resulted in a 2.7-fold increase of catalytic efficiency for degrading celloheptaose. CtCDP-CBM9 exhibited enhanced specific activities over 20% on the short-chain RAC (DP = 14) and more than 50% on the long-chain RAC (DP = 164). The chimeric protein CtCDP-CBM9 would be the first step to construct a cellulose phosphorylase for in vitro hydrogen production from cellulose by synthetic pathway biotransformation (SyPaB).  相似文献   

9.
A chitinase gene (chiA) from Pseudomonas sp. YHS-A2 was cloned into Escherichia coli using pUC19. The nucleotide sequence determination revealed a single open reading frame of chiA comprised of 1902 nucleotide base pairs and 633 deduced amino acids with a molecular weight of 67,452 Da. Amino acid sequence alignment showed that ChiA contains two putative chitin-binding domains and a single catalytic domain. Two proline-threonine repeat regions, which are linkers between catalytic and substrate-binding domains in some cellulases and xylanases, were also found. From E. coli, ChiA was purified 12.8-fold relative to the periplasmic fraction. The Michaelis constant and maximum initial velocity for p-nitrophenyl-N,N′-diacetylchitobiose were 1.06 mM and 44.4 μmol/h per mg protein, respectively. The purified ChiA binds not only to colloidal chitin but also to other substrates (avicel, chitosan, and xylan), but the binding affinity of avicel, chitosan, and xylan is around 10 times lower than that of colloidal chitin. The reaction of ChiA with colloidal chitin and chitooligosaccharides (trimer-hexamer) produced an end product of N,N′-diacetylchitobiose, indicating that ChiA is a chitobiosidase. Received: 29 October 1999 / Received revision: 16 March 2000 / Accepted: 24 March 2000  相似文献   

10.
Coagulation factor IX/coagulation factor X binding protein from the venom of Agkistrodon halys Pallas (AHP IX/X-bp) is a unique coagulation factor IX/coagulation factor X binding protein (IX/X-bp). Among all IX/X-bps identified, only AHP IX/X-bp is a Ca2+- and Zn2+-binding protein. The binding properties of Ca2+ and Zn2+ ions binding to apo-AHP IX/X-bp and their effects on the stability of the protein have been investigated by isothermal titration calorimetry, fluorescence spectroscopy, and differential scanning calorimetry. The results show that AHP IX/X-bp has two metal binding sites, one specific for Ca2+ with lower affinity for Zn2+ and one specific for Zn2+ with lower affinity for Ca2+. The bindings of Ca2+ and Zn2+ in the two sites are entropy- and enthalpy-driven. The binding affinity of AHP IX/X-bp for Zn2+ is 1 order of magnitude higher than for Ca2+ for either high-affinity binding or low-affinity binding, which accounts for the existence of one Zn2+ in the purified AHP IX/X-bp. Guanidine hydrochloride (GdnHCl)-induced and thermally induced denaturations of Ca2+–Ca2+-AHP IX/X-bp, Zn2+–Zn2+-AHP IX/X-bp, and Ca2+–Zn2+-AHP IX/X-bp are all a two-state processes with no detectable intermediate state(s), indicating the Ca2+/Zn2+-induced tight packing of the protein. Ca2+ and Zn2+ increase the structural stability of AHP IX/X-bp against GdnHCl or thermal denaturation to a similar extent. Although Ca2+ and Zn2+ have no obvious effect on the secondary structure of AHP IX/X-bp, they induce different rearrangements in local conformation. The Zn2+-stabilized specific conformation of AHP IX/X-bp may be helpful to its recognition of the structure of coagulation factor IX. This work suggests that in vitro, Ca2+ plays a structural rather than an active role in the anticoagulation of AHP IX/X-bp, whereas Zn2+ plays both structural and active roles in the anticoagulation. In blood, Ca2+ binds to AHP IX/X-bp and stabilizes its structure, whereas Zn2+ cannot bind to AHP IX/X-bp owing to the low Zn2+ concentration. AHP IX/X-bp prolongs the clotting time in vivo through its binding only with coagulation factor X/activated coagulation factor X.  相似文献   

11.
A β-1,3-glucanase gene, encoding a protein of 1,793 amino acids, was cloned from a strain of Paenibacillus sp. in this study. This large protein, designated as LamA, consists of many putative functional units, which include, from N to C terminus, a leader peptide, three repeats of the S-layer homologous module, a catalytic module of glycoside hydrolase family 16, four repeats of the carbohydrate-binding module of family CBM_4_9, and an analogue of coagulation factor Fa5/8C. Several truncated proteins, composed of the catalytic module with various organizations of the appended modules, were successfully expressed and characterized in this study. Data indicated that the catalytic module specifically hydrolyze β-1,3- and β-1,3–1,4-glucans. Also, laminaritriose was the major product upon endolytic hydrolysis of laminarin. The CBM repeats and Fa5/8C analogue substantially enhanced the hydrolyzing activity of the catalytic module, particularly toward insoluble complex substrates, suggesting their modulating functions in the enzymatic activity of LamA. Carbohydrate-binding assay confirmed the binding capabilities of the CBM repeats and Fa5/8C analogue to β-1,3-, β-1,3–1,4-, and even β-1,4-glucans. These appended modules also enhanced the inhibition effect of the catalytic module on the growth of Candida albicans and Rhizoctonia solani.  相似文献   

12.
The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.Communicated by G. Antranikian  相似文献   

13.
Synaptotagmin I is the major Ca2+ sensor for membrane fusion during neurotransmitter release. The cytoplasmic domain of synaptotagmin consists of two C2 domains, C2A and C2B. On binding Ca2+, the tips of the two C2 domains rapidly and synchronously penetrate lipid bilayers. We investigated the forces of interaction between synaptotagmin and lipid bilayers using single-molecule force spectroscopy. Glutathione-S-transferase-tagged proteins were attached to an atomic force microscope cantilever via a glutathione-derivatized polyethylene glycol linker. With wild-type C2AB, the force profile for a bilayer containing phosphatidylserine had both Ca2+-dependent and Ca2+-independent components. No force was detected when the bilayer lacked phosphatidylserine, even in the presence of Ca2+. The binding characteristics of C2A and C2B indicated that the two C2 domains cooperate in binding synaptotagmin to the bilayer, and that the relatively weak Ca2+-independent force depends only on C2A. When the lysine residues K189-192 and K326, 327 were mutated to alanine, the strong Ca2+-dependent binding interaction was either absent or greatly reduced. We conclude that synaptotagmin binds to the bilayer via C2A even in absence of Ca2+, and also that positively charged regions of both C2A and C2B are essential for the strong Ca2+-dependent binding of synaptotagmin to the bilayer.  相似文献   

14.
The Wcs120 gene encodes a highly abundant protein which appears to play an important role during cold acclimation of wheat. To understand the regulatory mechanism controlling its expression at low temperature, the promoter region has been characterized. Electrophoretic mobility shift assays using short promoter fragments revealed the presence in nuclear extracts from non-acclimated (NA) plants of multiple DNA-binding proteins which interact with several elements. In contrast, no DNA-binding activity was observed in the nuclear extracts from cold-acclimated (CA) plants. In vitro dephosphorylation of these CA nuclear extracts with alkaline phosphatase restored the binding activity. Moreover, okadaic acid (a potent phosphatase inhibitor) markedly stimulated the in vivo accumulation of the WCS120 family of proteins. This suggests that protein phosphatases PP1 and/or PP2A negatively regulate the expression of the Wcs120 gene. In addition, both Ca2+-dependent and Ca2+-independent kinase activities were found to be significantly higher in the CA nuclear extracts. Western analysis using antibodies directed against protein kinase C (PKC) isoforms showed that a PKCγ homolog (84 kDa) is selectively translocated into the nucleus in response to low temperature. Taken together, our results suggest that, in vivo, the expression of the Wcs120 gene may be regulated by nuclear factors whose binding activity is modulated by a phosphorylation/dephosphorylation mechanism. Received: 9 June 1997 / Accepted: 18 August 1997  相似文献   

15.
The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (K a = 2.5 × 105 M?1) than carob galactomannan (K a = 1.4 × 105 M?1). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity K a = 2.5 × 10?5 M?1 with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed K a against konjac glucomannan and carob galactomannan, 2.4 × 105 M?1 and 1.44 × 105 M?1, and ΔG of binding ?27.0 and ?25.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.  相似文献   

16.
The gene encoding the family 6 carbohydrate-binding module (CtCBM6A) from Clostridium thermocellum, cloned in pET-21a(+) expression vector, was overexpressed using Escherichia coli BL-21(DE3) cells and purified by immobilized metal-ion affinity chromatography. SDS-PAGE analysis of the recombinant CtCBM6A showed molecular size of approximately 15 kDa. Ligand-binding analysis of CtCBM6A with rye arabinoxylan and oat spelt xylan by affinity gel electrophoresis showed low affinity for these ligands (K a of 40 and 26 liter/g, respectively), and analysis by fluorescence spectroscopy (K a of 33 and 15 liter/g, respectively) corroborated lower binding affinity with the above soluble ligands. However, CtCBM6A displayed significantly higher ligand-binding affinity with insoluble wheat arabinoxylan with equilibrium association constant K a of 230 M?1 and binding capacity (N 0) of 11 μmole/g. The protein melting curve of CtCBM6A displayed a peak shift from 53 to 58°C in the presence of Ca2+, indicating that Ca2+ imparts thermal stability to the CtCBM6A structure. Homology modeling of CtCBM6A revealed a characteristic β-sandwich core structure. The Ramachandran plot of CtCBM6A showed 89% of the residues in the most favorable region, 10% in additionally favored region, and 1% in generously allowed region, indicating that CtCBM6A has a stable conformation.  相似文献   

17.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular-mass aggregation factor, termed MAF. Earlier investigations revealed that the cell aggregation activity of MAF depends on two functional domains: (i) a Ca2+-independent cell-binding domain and (ii) a Ca2+-dependent proteoglycan self-interaction domain. Structural analysis of involved carbohydrate fragments of the proteoglycan in the self-association established a sulfated disaccharide β-d-GlcpNAc3S-(1→3)-α-l-Fucp and a pyruvated trisaccharide β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp. Recent UV, SPR, and TEM studies, using BSA conjugates and gold nanoparticles of the synthetic sulfated disaccharide, clearly demonstrated self-recognition on the disaccharide level in the presence of Ca2+-ions. To determine binding forces of the carbohydrate–carbohydrate interactions for both synthetic MAF oligosaccharides, atomic force microscopy (AFM) studies were carried out. It turned out that, in the presence of Ca2+-ions, the force required to separate the tip and sample coated with a self-assembling monolayer of thiol-spacer-containing β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- was found to be quantized in integer multiples of 30 ± 6 pN. No binding was observed between the two monolayers in the absence of Ca2+-ions. Cd2+-ions could partially induce the self-interaction. In contrast, similar AFM experiments with thiol-spacer-containing β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- did not show a binding in the presence of Ca2+-ions. Also TEM experiments of gold nanoparticles coated with the pyruvated trisaccharide could not make visible aggregation in the presence of Ca2+-ions. It is suggested that the self-interaction between the sulfated disaccharide fragments is stronger than that between the pyruvated trisaccharide.  相似文献   

18.
Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Abstract: Synaptic membrane (SPM) and postsynaptic density (PSD) fractions isolated from cerebral cortex (CTX) and cerebellum (CL) of canine brain, either fresh or frozen and isolated from either fresh or frozen tissue, were found to contain L-[3H]glutamate binding sites. It was found that there was a concentration of L-glutamate binding sites in CTX-PSD and CL-PSD over the respective membrane fractions, and the Bmax value of CL-PSD (92.0 pmol/mg protein) was about three times that of CTX-PSD (28.9 pmol/mg). The results, together with those of others, suggest that the thin CL-PSD are probably derived from the excitatory synapses in the molecular layer. The ion dependency of L-glutamate binding to canine CTX-SPM fraction was found to be similar to that reported for a rat brain SPM fraction: (a) Cl? increased the number of L-glutamate binding sites and the effect was enhanced by Ca2+; Ca2+ alone had no significant effect; (b) the Cl?/Ca2+ -sensitive binding sites were abolished by 2-amino-4-phosphonobutyrate (APB) or freezing and thawing: (c) the effect of Na+ ion was biphasic: low concentration of Na+ (< 5 mM) decreased Cl?7Ca2+ -de-pendent L-glutamate binding sites, whereas at higher concentrations of Na+ the binding of glutamate was found to increase either in the presence or absence of Ca2+ and Cl?. In addition, the K+ ion (50 mM) was found to decrease the Na+-independent and Cl?/Ca2--independent binding of L-glutamate to fresh CTX-SPM by 18%, but it decreased the Na?-dependent and Cl?/Ca2+-independent L-glutamate binding by 93%; in the presence of Cl, ?/Ca2+, the K+ ion decreased the Na+-dependent binding by 78%. Freezing and thawing of CTX-SPM resulted in a 50% loss of the Na+-dependent L-glutamate binding sites assayed in the absence of Ca2+ and Cl?. The CL-SPM fraction showed similar ion dependency of L-glutamate binding except for the absence of Na?-dependent glutamate binding sites. The CTX-PSD fraction contained neither Na+-dependent nor APB (or Cl?/Ca2+)-sensitive L-glutamate binding sites and its L-glutamate binding was unaffected by freezing and thawing, in agreement with the reported findings using rat brain PSD preparation. L-Glutamate binding to CTX-SPM or CTX-PSD fraction was not affected by pretreatment with 10 mM L-glutamate, nor by simultaneous incubations with calmodulin. Also, phosphorylation of CTX-SPM or CTX-PSD fraction, whether incubated simultaneously or after removal of the phosphorylating reagents, had no effect on binding of L-glutamate. Furthermore, binding of L-glutamate to CTX-SPM or CTX-PSD was found to have no significant effect on subsequent phosphorylation of the fractions. Treatment of the CTX-PSD fraction with 0.5% deoxycholate, 1.0% N-lauroyl sarcosinate, 4 M guanidine-HCl, pH 7.0, 0.5 M KCl, and 1.0 M KCl removed the L-glutamate receptors from the PSD by 25%, 44%, 40%, 8%, and 11%. respectively. The respective percentages of total protein solubilized by these reagents were similar, indicating no preferential dissociation of the receptors, and suggesting that the L-glutamate receptor is an intrinsic PSD component. The present findings, together with the earlier ones showing the presence of γ-aminobutyric acid and flunitrazepam binding sites, of the Ca2+-dependent K+ channel, and of the voltage-dependent Ca2+ channel proteins in the isolated PSD fraction, suggest that many, if not all, neurotransmitter receptor proteins and ion channel proteins are anchored in the PSD at the synapse, and thus the PSD may play an important role in neurotransmission at the postsynaptic site.  相似文献   

20.
The smallest and enzymatically active molecule, TetApuQ818, was localized within the C-terminal Q818 amino acid residue after serial C-terminal truncation analysis of the recombinant amylopullulanase molecule (TetApuM955) from Thermoanaerobacter pseudoethanolicus. Kinetic analyses indicated that the overall catalytic efficiency, k cat/K m, of TetApuQ818 was 8–32% decreased for the pullulan and the soluble starch substrate, respectively. Changes to the substrate affinity, K m, and the turnover rate, k cat, were decreased significantly in both enzymatic activities of TetApuQ818. TetApuQ818 exhibited less thermostability than TetApuM955 when the temperature was raised above 85°C, but it had similar substrate-binding ability and hydrolysis products toward various substrates as TetApuM955 did. Both enzymes showed similar spectroscopies of fluorescence and circular dichroism, suggesting the active folding conformation was maintained after this C-terminal Q818 deletion. This study suggested that the binding ability of insoluble starch by TetApuM955 did not rely on the putative C-terminal carbohydrate binding module family 20 (CBM20) and two FnIII regions of TetApu, though the integrity of the AamyC module of TetApuQ818 was required for the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号