首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activins are known to be potentially important regulators of early developmental processes in amphibians, birds, and mammalians. In this study we report the expression of the inhibin subunits, including those that make up activin, the activin-binding protein follistatin, and activin receptor type II in several in vitro systems that model early murine embryonic development, namely embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and their differentiated derivatives. In addition, we examine the expression pattern of these factors in different stages of the mouse embryo itself. Expression of inhibin alpha and beta A subunits is restricted to certain differentiated cell types, while beta B subunits are expressed in both differentiated and undifferentiated cells. Our results further indicate a change in the expression pattern of inhibin subunits during early development from beta B at the blastocyst stage largely to beta A in postgastrulation embryos. This is similar to the expression pattern at equivalent stages of Xenopus and chick development. Expression of the activin-binding protein follistatin is altered by the induction of differentiation of P19 EC and ES cells by several factors, including retinoic acid. In contrast to the inhibin subunits and follistatin, activin receptor levels are not influenced by differentiation in these cell types. The results of this study demonstrate that the inhibin subunits and follistatin, but not the activin receptor type II, are differentially expressed during early murine development and suggest that the different forms of activin/inhibin are involved in the regulation of different developmental processes.  相似文献   

2.
The mRNA expression patterns of activin beta(A) and follistatin in the uterus and embryo, the mRNA expression of the activin receptor II in the embryo, and the localization in the uterus of the immunoreactive activin beta(A) and the receptor II proteins in the uterus were examined at gestation days 7-12 after ovulation in pig. Activin was located predominantly at the mesometrial side of the uterus during all stages of pregnancy studied. Follistatin mRNA was absent in the uterus during these stages, suggesting that activin of uterine origin is not inhibited by intra-uterine follistatin. The receptor was localized throughout the glandular and luminal epithelium of the uterus. In the embryo, activin was expressed predominantly in the epiblast before unfolding, but after unfolding of the epiblast activin expression shifted to the trophoblast. The expression pattern of follistatin mRNA was contrarily to that of activin, i.e., before unfolding predominantly in the trophoblast (days 8-9), and shifted to the epiblast at day 10. During streak stages, follistatin was detected in the node and primitive streak. Activin receptor II mRNA was first detected at day 8 in the embryoblast. At day 11, it was expressed in trophoblast cells near the epiblast, and in the first ingressing mesoderm cells. During the streak stages, it was expressed predominantly in the trophoblast. The presence of activin and its receptor in uterine epithelium and early embryonic tissues indicate that both embryonic and uterine activin are involved in intra-uterine processes, such as attachment and early embryonic development. Mol. Reprod. Dev. 59: 390-399, 2001.  相似文献   

3.
4.
5.
傅衍  牛冬  阮晖  余旭平  陈功  何国庆 《遗传学报》2001,28(12):1129-1136
分别用活化素(Activin)、卵泡抑素(FSP)及其组合(Activin FSP)来处理培养的鸭未成熟卵泡颗粒细胞,发现在FSH存在与不存在的情况下,Activin均能促进FSH受体mRNA的表达,且随着Activin浓度的增大,其刺激作用增强。FSP自身对FSH受体产生无显著作用,但能中和Activin对该受体产生的促进作用。这说明FSP和Activin对颗粒细胞具有自分泌作用,二者通过调节FSH受体mRNA的表达而在卵泡的生长发育过程中起着重要作用。  相似文献   

6.
We have investigated whether the activin family of growth factors is involved in the regulation of retinal cell differentiation. Immunocytochemistry and in situ hybridization have shown that activin/inhibin subunits alpha, betaA, and betaB; receptors II and IIB; follistatin; and a follistatin-like gene are expressed in different regions of the chick embryo retina in developmentally regulated patterns. When tested in dissociated retinal cultures, activin did not appear to affect cell survival or proliferation, but it exerted marked inhibitory effects on the differentiation of photoreceptors, while stimulating the differentiation of nonphotoreceptor neurons; both effects were concentration-dependent and follistatin-sensitive. The results are consistent with the possibility that activin family members play significant roles in the regulation of retinal development.  相似文献   

7.
The anatomical and cell biological aspects of somite formation in the chick embryo have been rather well studied. Molecular regulation of somitogenesis in vertebrates is just beginning to be understood. We have studied the effects of human recombinant activin on somitogenesis in gastrulating chick embryos cultured in vitro with a view to assessing the possible role of activin-related molecules in this phenomenon. Activin disrupted somitogenesis in treated embryos, resulting in the formation of abnormal, split or ectopic somites. Light microscopic examination indicated that the ability of activin to interfere with somitogenesis might be partly due to initiation of somite formation at ectopic sites. We show that these cells are indeed somitogenic by their expression of one of the earliest somite-specific marker genes, Pax3. Scanning electron microscopic examination of control and treated embryos revealed direct effects of activin on cell-cell interactions. Cells from treated embryos exhibited disrupted intercellular adhesion leading to large intercellular spaces, altered cell shapes and modification of cell surface protrusions. The effects of activin on somitogenesis appear to be specific, since the neural structures, which are generally more susceptible to chemical insults during gastrulation, were relatively less affected. The results clearly point to a role of activin-related molecules in somitogenesis in the chick embryo.  相似文献   

8.
To study the role of receptor tyrosine phosphatases in vertebrate development, in particular somitogenesis, we have cloned chick receptor tyrosine phosphatase Psi (cRPTPPsi). cRPTPPsi is expressed in a dynamic fashion in the somites to-be-formed and uniformly throughout the presomitic mesoderm. In differentiating somites, cRPTPPsi expression gets restricted to the dermomyotome. In addition cRPTPPsi is expressed in the developing intermediate mesoderm, in neurogenic and sensory organs, the limb bud and the developing heart.  相似文献   

9.
We report the isolation of a full-length rat cDNA for a new activin receptor. The deduced amino acid sequence of this receptor shows 67 percent overall identity with that of a previously identified mouse activin receptor. As predicted for the mouse activin receptor, the amino acid sequence of the rat receptor is consistent with a polypeptide containing an extracellular ligand binding domain, a hydrophobic transmembrane domain, and a serine/threonine kinase intracellular domain. In an expression assay, this new receptor was found to bind I125 radiolabeled activin.  相似文献   

10.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

11.
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.  相似文献   

12.
Truncated activin type II receptors have been reported to inhibit activin receptor signaling inXenopusembryos, although the mechanism of action for this effect has not been fully understood. In the present study we demonstrate that in P19 embryonal carcinoma cells both the induction of the activin responsive 3TP-lux reporter construct and the inhibition of retinoic acid-induced neuronal differentiation by activin are blocked by expression of a truncated activin receptor. To reveal the mechanism of action of truncated activin receptors, the interaction between different activin receptors has been investigated upon coexpression in COS cells followed by cross-linking of125I-activin A and subsequent immunoprecipitation. Complexes between a truncated activin type IIA receptor and activin type IA and type IB receptors can be formed, as demonstrated by coimmunoprecipitation of these type I receptors with the truncated activin type IIA receptor. Other type I receptors known as ALK-1 and ALK-6 also coimmunoprecipitate with the truncated type IIA receptor, whereas ALK-3 and ALK-5 do not. Furthermore, the activin type IIB2receptor does not coimmunoprecipitate with the truncated type IIA receptor, but decreases activin binding to the truncated type IIA receptor. In double immunoprecipitation experiments with cell lysates from COS cells, in which full-length activin type IIA and type IIB2receptors were cotransfected, no interaction between these receptors was found. In contrast, homomeric complexes of full-length activin type IIA receptors were detected. These results implicate that truncated activin receptors can interfere with activin signaling by interacting with activin type I receptors. Additionally, truncated activin type IIB2receptors might also interfere with type IIA receptor signaling by decreasing activin binding to the type IIA receptor and therefore might be more potent in inhibiting activin signal transduction. Furthermore, our data indicate that truncated type IIA receptors can interact with other type I receptors and as such might inhibit signal transduction by type I receptors other than activin type IA and type IB receptors.  相似文献   

13.
Activin is a member of the transforming growth factor beta (TGF-beta) and possesses various activities in cellular control phenomena. During Xenopus embryonic development, activin is thought to act as a natural mesoderm-inducing factor. We isolated here the Xenopus activin receptor cDNA from Xenopus tadpole cDNA library and examined the expression of the Xenopus activin receptor gene during the course of early embryonic development. The Xenopus activin receptor has an 87% homology at the level of deduced amino acid sequence with the mouse activin receptor, and using the cDNA obtained, three bands of mRNA with different lengths were detected in Xenopus embryos throughout early embryogenesis. We synthesized activin receptor mRNA in vitro and tested the effect of the injection of the mRNA into Xenopus fertilized eggs on subsequent development. When the synthetic mRNA was injected into uncleaved fertilized eggs, embryos with reduced trunk structure were formed. However, when the mRNA was injected into the ventral blastomeres at the 16-cell stage, embryos with a secondary body axis were formed. These results indicate the importance of the function of activin receptor in the regulatory mechanism for body axis formation.  相似文献   

14.
15.
16.
Little is known regarding factors that induce parasympathetic responsiveness during cardiac development. We demonstrated previously that in atrial cells cultured from chicks 14 days in ovo, transforming growth factor beta (TGFbeta) decreased parasympathetic inhibition of beat rate by the muscarinic agonist, carbamylcholine, by 5-fold and decreased expression of Galpha(i2). Here in atrial cells 5 days in ovo, TGFbeta increased carbamylcholine inhibition of beat rate 2.5-fold and increased expression of Galpha(i2). TGFbeta also stimulated Galpha(i2) mRNA expression and promoter activity at day 5 while inhibiting them at day 14 in ovo. Over the same time course expression of type I TGFbeta receptors, chick activin receptor-like kinase 2 and 5 increased with a 2.3-fold higher increase in activin receptor-like kinase 2. Constitutively active activin receptor-like kinase 2 inhibited Galpha(i2) promoter activity, whereas constitutively active activin receptor-like kinase 5 stimulated Galpha(i2) promoter activity independent of embryonic age. In 5-day atrial cells, TGFbeta stimulated the p3TP-lux reporter, which is downstream of activin receptor-like kinase 5 and had no effect on the activity of the pVent reporter, which is downstream of activin receptor-like kinase 2. In 14-day cells, TGFbeta stimulated both pVent and p3TP-lux. Thus TGFbeta exerts opposing effects on parasympathetic response and Galpha(i2) expression by activating different type I TGFbeta receptors at distinct stages during cardiac development.  相似文献   

17.
As activin is believed to be a key signalling factor during early pancreatic development, its influence on the proliferation and/or determination of insulin cells in the developing chick dorsal pancreatic bud was investigated. Dorsal pancreatic buds of 5-day-old chick embryos were explanted on to Matrigel and cultured in serum-free medium (Ham's F12.ITS), to which 1 or 10ng/ml activin was added. After 7 days in culture, the explants were processed for immunocytochemistry and the insulin-positive cells were scored and expressed as a proportion of the sum of insulin and glucagon cells. When compared to the control cultures (Hams F12.ITS alone), activin treatment resulted in respective increases in the proportion of insulin cells of 1.6 and 1.9 fold. It is suggested that activin treatment favours differentiation of the insulin cell pathway relative to glucagon cells.  相似文献   

18.
Follistatin, a secreted glycoprotein, has been shown to act as a potent neural inducer during early amphibian development. The function of this protein during embryogenesis in higher vertebrates is unclear, and to further our understanding of its role we have cloned, sequenced, and performed an in-depth expressional analysis of the chick homologue of follistatin. In addition we also describe the expression pattern of activin βA and activin β B, proteins that have previously been shown to be able to interact with follistatin. In this study we show that the expression of follistatin and the activins do not always overlap. Follistatin was first detected in Hensen's node and subsequently in the region described by Spratt [1952] as the neuralising area. In older embryos it was also expressed in a highly dynamic manner in the hind-brain as well as in the somites. We also present evidence that follistatin may have a later role in the resegmentation of the somites. We were unable to detect the expression of activin βA during early embryogenesis, whereas activin βB was first expressed in the extending primitive streak and subsequently in the neural folds. The results from this study are consistent with a role for follistatin in neural induction but suggest it has additional functions unrelated to its inhibitory actions on activins. © 1995 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号