首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A manganese-containing superoxide dismutase (SOD; EC 1.15.1.1 [EC] )was purified to electrophoretic homogeneity from seeds of Norwayspruce (Picea abies L.). The apparent molecular mass of thepurified enzyme was 86 kDa, as determined by gel filtration.The subunit molecular mass, estimated by SDS-polyacrylamidegel electrophoresis, was 22 kDa both in the presence and inthe absence of 2-mercaptoethanol. Thus, the native enzyme isa homotetramer with subunits that were not linked by disulfidebonds. The isoelectric point of this Mn-SOD was 5.5. The specificactivity of the Mn-SOD was strongly pH-dependent and was 400units per nmol SOD at pH 7.8 and 30 units per nmol SOD at pH10.4. The first 25 amino acid residues in the amino terminalregion of spruce Mn-SOD exhibited a high degree of sequencehomology to those of Mn-SODs from other organisms. In Mn-deficientneedles the activity of Mn-SOD was only half of that in non-deficientneedles, whereas the activity of CuZn-SOD was doubled. (Received May 20, 1994; Accepted October 31, 1994)  相似文献   

3.
Two isozymes of CuZn-superoxide dismutase (SOD) were purifiedfrom spinach. One (CuZn-SOD II) was localized in chloroplastsand had the same properties as the enzyme previously reported[Asada et al. (1973) Eur. J. Biochem. 36: 257–266]. Theother isozyme (CuZn-SOD I) was predominantly expressed in seedsand in etiolated seedlings of spinach, but was localized inthe cytosol of the leaves as a minor enzyme. The isozymes havesimilar molecular weights, subunit structures, and metal contents;but their amino acid compositions, absorption spectra, CD spectraand sensitivities to hydrogen peroxide are different. The amino acid sequences of 50 amino-terminal residues of thechloroplast and cytosol isozymes of CuZn-SOD from spinach, riceand horsetail were determined and compared with those of CuZn-SODsfrom other plants. The sequences can be divided into chloroplastand cytosol types, and characteristic sequences can be identifiedin accordance with the observations that the two types of CuZn-SODisozymes from green algae, ferns and angiosperms can be distinguishedimmunologically from each other. Differences in amino acid sequencesamong the cytosol enzymes are greater than those among the chloroplastenzymes, indicating that the rate of mutation of the cytosolCuZn-SOD is higher than that of the chloroplast CuZn-SOD. Theseresults provide further evidence that the divergence of thetwo types of isozyme of CuZn-SOD occurred at a very early stageof its acquisition, and that each type of CuZn-SOD has evolvedindependently. (Received September 1, 1989; Accepted November 6, 1989)  相似文献   

4.
CuZn-superoxide dismutase (SOD) from horsetail (Equisetum arvense)was purified to a crystalline state and that from pond scum(Spirogyra sp.) was purified to a mixture of three isozymes.The purified CuZn-SODs from the fern and the green alga showsimilar properties to those of the angiosperm and mammalianenzymes with respect to molecular weight, subunit structure,absorption spectrum, circular dichroism spectrum and the effectof modification of the arginine residues by 2,3-butanedioneon activity. Horsetail and pond scum contained three isozymeseach of CuZn-SOD. These isozymes are divided to two types: onetype gave a cross-reaction with antibody raised against chloroplast-typeCuZn-SOD from spinach and other type cross-reacted with antibodyraised against cytosol-type CuZn-SOD from spinach. Thus, itappears that the divergence of the chloroplast and cytosol typesof CuZn-SOD started at a very early stage in the molecular evolutionof this enzyme. (Received January 30, 1989; Accepted April 19, 1989)  相似文献   

5.
6.
《Free radical research》2013,47(1):83-91
Cytosolic copperzinc-superoxide dismutase (CuZn-SOD I; EC 1.15.1.1) was purified to homogeneity from watermelon (Citrullus vulgaris Schrad.) cotyledons. The stepwise purification procedure consisted of acetone precipitation, batch anion-exchange chromatography, anion-exchange Fast Protein Liquid Chromatography, gel-filtration column chromatography, and affinity chromatography on concanavalin A-Sepharose. CuZn-SOD I was purified 310-fold with a yield of 12.6 micrograms enzyme per gram cotyledons, and had a specific activity of 3, 540 units per milligram protein. The relative molecular mass for cytosolic CuZn-SOD was 34000, and it was composed by two equal subunits of 16.3 kDa. CuZn-SOD I did not contain neutral carbohydrates in its molecule, and its ultraviolet and visible absorption spectra showed two absorption maxima at 254 nm and 580 nm. Metal analysis showed that the enzyme contained 1 gram-atom Cu and 1 gram-atom Zn per mole dimer. Cytosolic CuZn-SOD was recognized by the antibody against peroxisomal CuZn-SOD from watermelon cotyledons, and its enzymatic activity was inhibited by this antibody. By IEF (pH 4.2–4.9), using a new method for vertical slab gels set up in our laboratory, purified cytosolic CuZn-SOD was resolved into two equal isoforms with isoelectric points of 4.63 and 4.66.  相似文献   

7.
Haddad, Imad Y., Bedford Nieves-Cruz, and Sadis Matalon.Inhibition of surfactant function by copper-zinc superoxide dismutase (CuZn-SOD). J. Appl.Physiol. 83(5): 1545-1550, 1997.The efficacy ofantioxidant enzymes to limit oxidant lung injury by instillation withsurfactant mixtures in preterm infants with hyaline membrane disease isunder investigation. However, there is concern that instillation ofproteins in the alveolar space may inactivate pulmonary surfactant. Westudied the effects of bovine copper-zinc superoxide dismutase(CuZn-SOD) on the biophysical properties of two distinct surfactantpreparations. Incubation of calf lung surfactant extract (CLSE, 1 mgphospholipid/ml) and Exosurf (0.1 mg phospholipid/ml) with CuZn-SOD(1-10 mg/ml) prevented the fall of surface tension at minimalbubble radius (Tmin) to lowvalues with dynamic compression in a pulsating bubble surfactometer. CuZn-SOD also enhanced the sensitivity to inactivation by albumin, normal human serum, and after treatment with peroxynitrite. The inhibitory effects of CuZn-SOD on CLSE, but not Exosurf, were abolishedat high lipid concentrations (3 mg/ml) and after the addition of humansurfactant protein A (by weight). We conclude that CuZn-SOD mayinterfere with the surface activity of surfactant mixtures, leading todecreased effectiveness of surfactant replacement therapy.

  相似文献   

8.
A cDNA encoding the NADPH:protochlorophyllide oxidoreductase(EC 1.6.99.1 [EC] ) was isolated from suspension-cultured cells ofthe liverwort, Marchantia paleacea var. diptera. In contrastto the situation in most higher plants, the liverwort gene wasexpressed in a light-dependent manner. 2Present address: Department of Biological Science, Facultyof Science, Kumamoto University, Kurokami, Kumamoto, 860-8555Japan.  相似文献   

9.
Cytosolic Ascorbate Peroxidase in Seedlings and Leaves of Maize (Zea mays)   总被引:2,自引:0,他引:2  
Ascorbate peroxidase (APX) was purified to homogeneity frommaize (Zea mays L. cv.) coleoptiles. APX was a monomer witha molecular mass of 28 kDa, as determined by gel nitration andSDS-polyacrylamide gel electrophoresis. It contained one protohememoiety per molecule, with the oxidized form giving a Soret peakat 403 nm with small peaks at 502 and 638 nm, and the reducedform giving peaks at 435 and 556 nm. The enzyme was not inactivatedby depletion of ascorbate. Cell fractionation and immunohistochemicalstudies using polyclonal antibodies raised against maize APXrevealed that the enzyme was not located in the chloroplastsof green leaves. It was abundant in the cytoplasm but not inthe vacuoles of cells in the coleoptile, mesocotyl and youngleaves of seedlings. In mature green leaves, small amounts ofthe enzyme were distributed in vascular systems, in particularin the companion cells. The N-terminal amino acid sequence ofmaize APX exhibited high homology to pea cytosolic APX, spinachAPX and Arabidopsis APX, but not to APX from tea chloroplasts. (Received February 15, 1993; Accepted May 6, 1993)  相似文献   

10.
The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed.  相似文献   

11.
Genes encoding subunits of complex I (EC 1.6.5.3 [EC] ) of the mitochondrialrespiratory chain vary in their locations between the mitochondrialand nuclear genomes in different organisms, whereas genes fora homologous multisub-unit complex in chloroplasts have to dateonly been found on the plastid genome. In potato (Solatium tuberosumL.), the gene coding for the mitochondrial 76 kDa iron-sulphurprotein is identified in the nuclear genome. The gene is transcribedinto polyadenylated mRNA which is most abundant in flowers,and more frequent in tubers than in leaves. The amino acid sequenceis well conserved relative to the nuclear-encoded 75 kDa and78 kDa subunits of Bos taurus and Neurospora crassa, respectively,and to the Paracoccus denitrificans homologue, most prominentlyin the region presumed to carry the iron-sulphur clusters. Polyclonalantibodies directed against the 78 kDa complex I subunit ofN. crassa recognise the 76 kDa polypeptide in potato mitochondrialcomplex I, and additionally a polypeptide of 75 kDa in solubilisedstroma thylakoids from spinach chloroplasts. The 32 amino acidresidues long presequence of the potato mitochondrial 76 kDacomplex I subunit targets the precursor polypeptide into isolatedpotato mitochondria but not into isolated chloroplasts. Theseresults suggest that chloroplast stroma thylakoids contain aprotein similar in size and antigenicity to, but geneticallydistinct from, the mitochondrial subunit. 1 To whom correspondence should be addressed. 4 Present address: Max-Planck-Institut für Molekulare Genetik,Ihnestrasse 73, D-14195, Berlin, Germany. 5 Present address: Bioinside GmbH, Potsdamer Strasse 18A, D-14513Teltow, Germany.  相似文献   

12.
13.
Ribulose 5-phosphate (Ru5P) kinase (ATP:D-ribulose 5-phosphate1-phosphotrans- ferase; EC 2.7.1.19 [EC] ), an enzyme in the reductivepentose phosphate cycle, was purified from the green alga Bryopsismaxima and its activity and peptide composition were studied.The specific activity of purified Ru5P kinase was 20 µmoleRuBP formed (mg protein)–1 min–1 corresponding toa 490-fold purification from the supernatant of chloroplasts.The Km values of Ru5P kinase for ATP and Ru5P were 69 µMand 330 µM, respectively. The molecular size of Ru5P kinase was estimated as 90 kDa bygel filtration and that of its polypeptide as 41 kDa by SDS-polyacrylamidegel electrophoresis. A small portion of the Ru5P kinase wasfound in a large molecular state (500 kDa) which was consideredto be an inactive form of the enzyme. Ru5P kinase activity has been reported in the pyrenoid of Eremosphaeraviridis as well as ribulose 1,5-bisphosphate carboxylase-oxygenase(RuBisCO) and ribose 5-phosphate isomerase activity (Holdsworth1971). In Bryopsis maxima, among the pyrenoid polypeptides otherthan that of RuBisCO, we found a polypeptide of 42 kDa, similarto that of Ru5P kinase in molecular size and ratio to RuBisCO.A peptide map of the 42 kDa pyrenoid polypeptide, however, showedthat it differed from that of Ru5P kinase. In conclusion, Ru5Pkinase may be not involved in the pyrenoid of this alga. (Received January 19, 1985; Accepted May 15, 1985)  相似文献   

14.
In chloroplasts O2 is photoproduced via the univalentreduction of O2 in PSI even under conditions that are favorablefor photosynthesis. The photogenerated O2 is disproportionatedto H2O2 and O2 in a reaction that is catalyzed by superoxidedismutase (SOD). The H2O2-scavenging ascorbate peroxidase isbound to the thylakoid membranes at or near the PSI reactioncenter [Miyake and Asada (1992) Plant Cell Physiol. 33: 541],and the primary product of oxidation in the peroxidase-catalyzedreaction, the monodehydroascorbate radical, is photoreducedto ascorbate in PSI in a reaction mediated by ferredoxin [Miyakeand Asada (1994) Plant Cell Physiol. 35: 539]. Therefore, SODshould be localized at or near the PSI complex. We report herethe microcompartmentalization of the chloroplastic CuZn-SODon the stromal-faces of thylakoid membranes where the PSI-complexis located. Spinach leaves were fixed and substituted by a rapidfreezing and substitution method that allows visualization ofintact chloroplasts. The embedded sections were immuno labeledwith the antibody against CuZn-SOD by the immunogold method.About 70% of the immunogold particles were found within 5 nmfrom the surface of the stromal-faces of thylakoid membranes.Of these particles, about 40% were found at the ends and marginsof the grana thylakoids and 60% were found on the stromal sideof the stromal thylakoids. From these results, the local concentrationof CuZn-SOD on the stroma-facing surfaces of the thylakoid membraneswas estimated to be about 1 mM. The effect of the microcompartmentalizationof CuZn-SOD on the scavenging of superoxide radicals is discussed. (Received November 25, 1994; Accepted February 23, 1995)  相似文献   

15.
S C Grace 《Life sciences》1990,47(21):1875-1886
Three isozymes of superoxide dismutase (SOD) have been identified and characterized. The iron and manganese isozymes (Fe-SOD and Mn-SOD, respectively) show extensive primary sequence and structural homology, suggesting a common evolutionary ancestor. In contrast, the copper/zinc isozyme (CuZn-SOD) shows no homology with Fe-SOD or Mn-SOD, suggesting an independent origin for this enzyme. The three isozymes are unequally distributed throughout the biological kingdoms and are located in different subcellular compartments. Obligate anaerobes and aerobic diazotrophs contain Fe-SOD exclusively. Facultative aerobes contain either Fe-SOD or Mn-SOD or both. Fe-SOD is found in the cytosol of cyanobacteria while the thylakoid membranes of these organisms contain a tightly bound Mn-SOD. Similarly, most eukaryotic algae contain Fe-SOD in the chloroplast stroma and Mn-SOD bound to the thylakoids. Most higher plants contain a cytosol-specific and a chloroplast-specific CuZn-SOD, and possibly a thylakoid-bound Mn-SOD as well. Plants also contain Mn-SOD in their mitochondria. Likewise, animals and fungi contain a cytosolic CuZn-SOD and a mitochondrial Mn-SOD. The Mn-SOD found in the mitochondria of eukaryotes shows strong homology to the prokaryotic form of the enzyme. Taken together, the phylogenetic distribution and subcellular localization of the SOD isozymes provide strong support for the hypothesis that the chloroplasts and mitochondria of eukaryotic cells arose from prokaryotic endosymbionts.  相似文献   

16.
Cytosolic copperzinc-superoxide dismutase (CuZn-SOD I; EC 1.15.1.1) was purified to homogeneity from watermelon (Citrullus vulgaris Schrad.) cotyledons. The stepwise purification procedure consisted of acetone precipitation, batch anion-exchange chromatography, anion-exchange Fast Protein Liquid Chromatography, gel-filtration column chromatography, and affinity chromatography on concanavalin A-Sepharose. CuZn-SOD I was purified 310-fold with a yield of 12.6 micrograms enzyme per gram cotyledons, and had a specific activity of 3, 540 units per milligram protein. The relative molecular mass for cytosolic CuZn-SOD was 34000, and it was composed by two equal subunits of 16.3 kDa. CuZn-SOD I did not contain neutral carbohydrates in its molecule, and its ultraviolet and visible absorption spectra showed two absorption maxima at 254 nm and 580 nm. Metal analysis showed that the enzyme contained 1 gram-atom Cu and 1 gram-atom Zn per mole dimer. Cytosolic CuZn-SOD was recognized by the antibody against peroxisomal CuZn-SOD from watermelon cotyledons, and its enzymatic activity was inhibited by this antibody. By IEF (pH 4.2-4.9), using a new method for vertical slab gels set up in our laboratory, purified cytosolic CuZn-SOD was resolved into two equal isoforms with isoelectric points of 4.63 and 4.66.  相似文献   

17.
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date. SOD1, or CuZn-SOD (EC 1.15.1.1), was the first enzyme to be characterized and is a copper and zinc-containing homodimer that is found almost exclusively in intracellular cytoplasmic spaces. SOD2, or Mn-SOD (EC 1.15.1.1), exists as a tetramer and is initially synthesized containing a leader peptide, which targets this manganese-containing enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1), is the most recently characterized SOD, exists as a copper and zinc-containing tetramer, and is synthesized containing a signal peptide that directs this enzyme exclusively to extracellular spaces. What role(s) these SODs play in both normal and disease states is only slowly beginning to be understood. A molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles. For example, a variety of single amino acid mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis. Knocking out the SOD2 gene in mice results in a lethal cardiomyopathy. A single amino acid mutation in human SOD3 is associated with 10 to 30-fold increases in serum SOD3 levels. As more information is obtained, further insights will be gained.  相似文献   

18.
《Free radical research》2013,47(1):383-390
lsozymes of CuZn-superoxide dismutase (SOD) were purified from angiosperms (spinach and rice), fern (horsetail) and green alga (Spirogyra). Occurrence of CuZn-SOD was confirmed by its purification in the group of green algae which shows the phragmoplast type of cell division. Purified CuZn-SODS are divided to chloroplast and cytosol types by their cellular localization and immunological properties. Their amino acid compositions, absorption spectra, CD spectra, and sensitivity to hydrogen peroxide also are distinguished from each other. All organisms including Spirogyra contain both types of isozyme. Thus, the divergence of the two types of CuZn-SOD isozyme occurred immediately after its acquisition by the most evolved green algae.

Amino acid sequences of amino-terminal regions of CuZn-SOD isozyrnes from spinach, rice and horsetail were determined and compared with those of CuZn-SODS from other plants. The chloroplast and cytosol isozymes of CuZn-SOD show each characteristic sequences. Sequence differences among the cytosol CuZn-SODS are greater than those among the chloroplast CuZn-SODS. These observations indicate that each type of isozyme had independently evolved after the acquisition of CuZn-SOD.  相似文献   

19.
Nitrite reductase [nitric-oxide : (acceptor) oxidoreductase,EC 1.7.2.1 [EC] ] from a denitrifying phototrophic bacterium, Rhodopseudomonassphaeroides forma sp. denitrificans, was purified. The molecularweight of the enzyme, estimated by gel-filtration, was 80,000.Sodium dodecyl sulfate polyacrylamide gel electrophoresis ofthe purified enzyme showed a single 39,000 molecular weightband, indicating that the enzyme was composed of two subunitsof identical molecular weight. The oxidized form of the enzymeexhibited maximum absorption at 280 nm, 450 nm and 590 nm, andthe reduced form only at 280 nm. The ESR spectrum of a frozensolution of the oxidized enzyme showed a typical spectrum patternof a copper protein, suggesting that two types of Cu2+ existedwithin the enzyme. Estimates with an atomic absorption spectrophotometer,revealed two copper atoms per molecule. The optimum pH of theenzyme was 7.0. Km for nitrite was estimated to be 51 µM,and the optimum temperature, 30?C. The enzyme was inhibitedby CO, potassium cyanide and diethyldithiocarbamate and activatedby monoiodoacetate. Phenazine methosulfate, 2,6-dichlorophenolindophenol,horse heart cytochrome c, and cytochrome c2 from this bacteriumwere suitable electron donors. The enzyme also showed cytochromec oxidase activity. (Received May 4, 1978; )  相似文献   

20.
Reed ML 《Plant physiology》1979,63(1):216-217
Two proteins which have carbonate dehydratase (carbonic anhydrase, EC 4.2.1.1) activity were shown to be in the chloroplasts and in the cytosol of leaves of Brassica chinensis, Spinacia oleracea, and in variegated leaves of Tradescantia albiflora and Hedera canariensis. The chloroplastic enzyme is smaller than the one in the cytosol, as it runs farther on gradient polyacrylamide gels. It was separated from the other by isolation of chloroplasts of Brassica and Spinacia on sucrose density gradients; approximately half of the total activity was in the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号