首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A model rumen system, dual-flow continuous culture fermenters, was evaluated by two comparative criteria in two experiments using ribosomal (r)RNA-targeted DNA probes to compare key microbial groups in samples. The initial experiment measured temporal changes in population structure during adaptation of ruminal microbial populations in fermenters over 240 h. The fermenter inoculum contained 34.9% Bacteria, 60.1% Eukarya and 6.8% Archaea measured as a fraction of total small subunit (SSU) rRNA quantified using a universal probe. The cellulolytic bacterial genus Fibrobacter comprised 9.5% of total SSU rRNA in the inoculum. After 240 h of fermenter operation, the average abundance was 80.9% Bacteria, 6.1% Eukarya, 5.1% Archaea and Fibrobacter genus accounted for 6.6% of the total SSU rRNA. Divergence between ruminal and fermenter population structure was evaluated in the second experiment and samples were classified as ruminal, inoculum or fermenter (96, 120, 144 and 168 h of fermenter operation). Fermenter samples had higher relative abundances of Bacteria (84.5%) and Archaea (2.1%) and lower relative abundances of Eukarya (1.8%) than ruminal samples (average 48.0% Bacteria, 1.3% Archaea and 61.5% Eukarya). The relative abundance of Fibrobacter was similar in all samples, averaging 2.5%. The ruminal and fermenter samples had similar proportions of F. succinogenes and F. succinogenes subgroup 3 (as a percentage of Fibrobacter SSU rRNA). Fibrobacter succinogenes subgroup 1 and F. intestinalis proportions of Fibrobacter were lower in fermenter samples (8.2% and 0.7% respectively) than in ruminal samples (28.4% and 2.2% respectively). Fermenters were able to maintain a core prokaryotic community structure similar to the native microbial community in the rumen. Although protozoa populations were lost, maintenance of Fibrobacter and archaeal populations indicated that the model system supported a functional community structure similar to the rumen. This model rumen system may serve as a suitable tool for studying aspects of ruminal microbial ecology and may resolve some of the relationships between microbial community structure and function by providing control of experimental conditions.  相似文献   

2.
Radiolabelled and fluorescent-dye-conjugated oligonucleotide probes which targeted rRNA sequences were developed for the enumeration of the ruminal bacterium Synergistes jonesii 78-1 in mixed culture. Two probes were tested, and both were highly specific for the respective complementary sequences of the target organism. Individual cells of S. jonesii in pure and mixed cultures were clearly visualized in situ by hybridization with the fluorescent-dye-conjugated probe but could not be detected in natural samples. Therefore the radiolabelled probe was used to monitor the population of S. jonesii introduced into a chemostat which simulated the rumen ecosystem. The S. jonesii probe did not hybridize to RNA extracted from the culture prior to inoculation with the target organism. After inoculation, S. jonesii rRNA represented 4.5% of the total bacterial rRNA and then rapidly declined to < 0.2% before increasing to about 1% of the total bacterial rRNA during the following 3 weeks. This study demonstrates that rRNA-targeted probes could be used for tracking organisms introduced into the rumen ecosystem.  相似文献   

3.
16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.  相似文献   

4.
Oligonucleotide probes covering three phylogenetically defined groups of Butyrivibrio spp. were successfully designed and tested. The specificity of each probe was examined by hybridization to rRNAs from an assortment of B. fibrisolvens isolates as well as additional ruminal and nonruminal bacteria. The sensitivity of the hybridization method was determined by using one of the probes (probe 156). When RNA was extracted from a culture of OB156, the probe was able to detect target cells at densities as low as 10(4) cells/ml. When 10(4) or more target cells/ml were added to cattle rumen samples, detectable hybridization signals were obtained with 1,000 ng of total RNA loaded onto the nylon membrane. In contrast, the sensitivity was reduced to 10(6) target cells/ml at 100 ng of RNA per slot. The probes were used to type 19 novel Butyrivibrio isolates. The phylogenetic placement was confirmed by partial 16S rRNA gene sequencing. The use of the probes in community-based studies indicated that the Butyrivibrio groups examined in this paper did not represent a significant portion of the bacterial 16S rRNA pool in the rumen of the cattle, sheep, and deer examined.  相似文献   

5.
Aims: To quantitatively analyse the faecal bacterial communities of Holstein calves and track their succession up to 12 weeks of age. Methods and Results: Faecal samples obtained from four female Holstein calves were analysed by the RNA‐based, sequence‐specific rRNA cleavage method. Twelve scissor probes covering major rumen bacterial groups were used, detecting c. 60–90% of the total 16S rRNAs. At 1 week of age, 16S rRNAs from members of the BacteroidesPrevotella group (40·0% of the total 16S rRNAs), Faecalibacterium (21·7%), the Clostridium coccoidesEubacterium rectale group (16·7%) and the Atopobium cluster (10·9%) were detected at high levels. Throughout the 12‐week period, rRNAs of the BacteroidesPrevotella and the Cl. coccoidesEu. rectale groups constituted the major fraction of microbiota (c. 50–70% of the total). The relative abundances of the Atopobium cluster, Faecalibacterium, and some probiotic bacteria (such as those of the genera Lactobacillus and Bifidobacterium) decreased as the animal aged. Instead, an uncultivated rumen bacterial group, as well as Ruminococcus flavefaciens and Fibrobacter emerged at the detectable levels (1–2%) in the faeces sampled at a postweaning age. In addition, certain bacterial groups that were not covered by the probe suite increased as the animals aged. Conclusions: Young calves undergo dynamic changes in their intestinal bacterial community during the first 12 weeks of life. As young ruminants undergo metabolic and physiological development in their digestive tracts in the transition from a monogastric to a ruminant animal at an early age, the intestinal bacterial community may reflect such development. Significance and Impact of the Study: The succession of the bacterial communities in the faeces of calves was quantitatively monitored in the present study for the first time. The approach used here was demonstrated to be a useful means for determining the populations of predominant faecal bacterial groups in a variety of calf experiments in response to diet, stress and disease.  相似文献   

6.
7.
Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint.  相似文献   

8.
AIMS: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18:2) via conjugated 18:2 metabolites (mainly cis-9,trans-11-18:2, conjugated linoleic acid) to vaccenic acid (trans-11-18:1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18:0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. METHODS AND RESULTS: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. CONCLUSIONS: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. SIGNIFICANCE AND IMPACT OF THE STUDY: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.  相似文献   

9.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

10.
To investigate the population structure of the predominant phylogenetic groups within the human adult fecal microbiota, a new oligonucleotide probe designated S-G-Clept-1240-a-A-18 was designed, validated, and used with a set of five 16S rRNA-targeted oligonucleotide probes. Application of the six probes to fecal samples from 27 human adults showed additivity of 70% of the total 16S rRNA detected by the bacterial domain probe. The Bacteroides group-specific probe accounted for 37% +/- 16% of the total rRNA, while the enteric group probe accounted for less than 1%. Clostridium leptum subgroup and Clostridium coccoides group-specific probes accounted for 16% +/- 7% and 14% +/- 6%, respectively, while Bifidobacterium and Lactobacillus groups made up less than 2%.  相似文献   

11.
Bacterial diversity is central to ecosystem sustainability and soil biological function, for which the role of roots is important. The high-throughput analysis potential of taxonomic microarray should match the breadth of bacterial diversity. Here, the power of this technology was evidenced through methodological verifications and analysis of maize rhizosphere effect based on a 16S rRNA-based microarray developed from the prototype of H. Sanguin et al. (Environ. Microbiol. 8:289-307, 2006). The current probe set was composed of 170 probes (41 new probes in this work) that targeted essentially the Proteobacteria. Cloning and sequencing of 16S rRNA amplicons were carried out on maize rhizosphere and bulk soil DNA. All tested clones that had a perfect match with corresponding probes were positive in the hybridization experiment. The hierarchically nested probes were reliable, but the level of taxonomic identification was variable, depending on the probe set specificity. The comparison of experimental and theoretical hybridizations revealed 0.91% false positives and 0.81% false negatives. The microarray detection threshold was estimated at 0.03% of a given DNA type based on DNA spiking experiments. A comparison of the maize rhizosphere and bulk soil hybridization results showed a significant rhizosphere effect, with a higher predominance of Agrobacterium spp. in the rhizosphere, as well as a lower prevalence of Acidobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes, a new taxon of interest in soil. In addition, well-known taxonomic groups such as Sphingomonas spp., Rhizobiaceae, and Actinobacteria were identified in both microbial habitats with strong hybridization signals. The taxonomic microarray developed in the present study was able to discriminate and characterize bacterial community composition in related biological samples, offering extensive possibilities for systematic exploration of bacterial diversity in ecosystems.  相似文献   

12.
A nucleic acid-based method was evaluated in the course of a study of microbial community structure in the cricket hindgut. Genomic DNA was extracted from the hindgut microbial community of Acheta domesticus and used as a template in the polymerase chain reaction (PCR) method, using primers that align to well conserved regions of the 16S rRNA gene. The rDNA-PCR product was used as a community probe to generate restriction fragment length polymorphisms (RFLPs) of hindgut bacterial isolates and gut microbial communities of insects fed different diets. Fingerprints of the bacterial isolates consisted of several bands suggesting multiple rRNA operons. In contrast with soil communities, hindgut community RFLP contained distinguishable band patterns. However, community rDNA fingerprints were complex and varied among insects fed similar diets, suggesting considerable intrinsic variability in the hindgut microbial community structure between crickets regardless of dietary regime. These results suggest that community RFLP methods using broad-specific phylogenetic probes do not have the resolution or specificity required to ascertain the effect of diet on the cricket hindgut microbial community structure.  相似文献   

13.
AIMS: To quantitatively analyse the changes in group-specific rRNA levels in activated sludge as a function of sample handling and storage procedure. METHODS AND RESULTS: Quantitative membrane hybridizations with (32)P-labelled oligonucleotide probes were used to analyse the effects of different sample handling and storage conditions on the relative rRNA levels of the alpha, beta, and gamma-Proteobacteria, the Cytophaga-Flavobacteria group, and the mycolic acid-containing actinomycetes in activated sludge. Group-specific rRNA levels, expressed as percentages of total 16S rRNA detected with a universal probe, in samples maintained at room temperature significantly changed after 48 h. Group-specific rRNA levels in samples treated with chloramphenicol showed significant change after 72 h. CONCLUSIONS: Sample storage at room temperature is a viable option if freezing or analysis can be performed within 24 h, while treatment with chlorampenicol can extend that time to at least 48 h. SIGNIFICANCE AND IMPACT OF THE STUDY: Handling, shipping, and storage of environmental samples under several conditions may result in inaccurate determination of the microbial populations in microbial ecology studies.  相似文献   

14.
The microarray approach has been proposed for high throughput analysis of the microbial community by providing snapshots of the microbial diversity under different environmental conditions. For this purpose, a prototype of a 16S rRNA-based taxonomic microarray was developed and evaluated for assessing bacterial community diversity. The prototype microarray is composed of 122 probes that target bacteria at various taxonomic levels from phyla to species (mostly Alphaproteobacteria). The prototype microarray was first validated using bacteria in pure culture. Differences in the sequences of probes and potential target DNAs were quantified as weighted mismatches (WMM) in order to evaluate hybridization reliability. As a general feature, probes having a WMM > 2 with target DNA displayed only 2.8% false positives. The prototype microarray was subsequently tested with an environmental sample, which consisted of an Agrobacterium-related polymerase chain reaction amplicon from a maize rhizosphere bacterial community. Microarray results were compared to results obtained by cloning-sequencing with the same DNA. Microarray analysis enabled the detection of all 16S rRNA gene sequences found by cloning-sequencing. Sequences representing only 1.7% of the clone library were detected. In conclusion, this prototype 16S rRNA-based taxonomic microarray appears to be a promising tool for the analysis of Alphaproteobacteria in complex ecosystems.  相似文献   

15.
Two new primer sets based on the rpoB gene were designed and evaluated with bovine and ovine rumen samples. The newly developed rpoB-DGGE primer set was used along with the 16S rRNA gene-V3, and another (old) rpoB-DGGE-based primer set from a previous study to in vitro compare the bovine and ovine rumen ecosystems. The results indicate a significant (P<0.001) difference in the microbial population between the two ruminants irrespective of the primers used in the analysis. Qualitative comparison of the data provides evidence for the presence of similar phyla profiles between the 16S rRNA gene and the newly developed rpoB primers. A comparison between the two rpoB-based primer sets (old and new) showed that the old rpoB-based primers failed to amplify phylum Bacteroidetes (a common phylum in the rumen) in both bovine and ovine rumen samples. The old and new rpoB-DGGE-based primers amplified a large number of clones belonging to phylum Proteobacteria, providing a useful insight into the microbial structure of the rumen. ChaoI, ACE, Simpson, and Shannon-Weaver index analysis estimated the bovine rumen to be more diverse than the ovine rumen for all three primer sets. These results provide a new insight into the community structure among ruminants using the newly developed primers in this study.  相似文献   

16.
Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clostridium aminophilum was monensin sensitive in vitro, but C. aminophilum persisted in the rumen after monensin was added to the diet. An in vitro culture system was developed to assess the competition of C. aminophilum, P. anaerobius, and C. sticklandii with predominant ruminal bacteria (PRB). PRB were isolated from a 10(8) dilution of ruminal fluid and maintained as a mixed population with a mixture of carbohydrates. PRB did not hybridize with the probes to C. aminophilum, P. anaerobius, or C. sticklandii. PRB deaminated Trypticase in continuous culture, but the addition of C. aminophilum, P. anaerobius, and C. sticklandii caused a more-than-twofold increase in the steady-state concentration of ammonia. C. aminophilum, P. anaerobius, and C. sticklandii accounted for less than 5% of the total 16S rRNA and microbial protein. Monensin eliminated P. anaerobius and C. sticklandii from continuous cultures, but it could not inhibit C. aminophilum. The monensin resistance of C. aminophilum was a growth rate-dependent, inoculum size-independent phenomenon that could not be maintained in batch culture. On the basis of these results, we concluded that the feed additive monensin cannot entirely counteract the wasteful amino acid deamination of obligate amino acid-fermenting ruminal bacteria.  相似文献   

17.
Cloned fragments of genomic DNA from the ruminal anaerobe Bacteroides ruminicola subsp. brevis B14 were isolated and used as hybridization probes to identify closely related bacterial species. One DNA fragment unique to strain B14 was tested to determine its sensitivity in detecting homologous sequences among total ruminal microbial DNA. In a DNA titration experiment, the probe was capable of detecting strain B14 sequences in vitro down to 0.1% of the total bacterial DNA present in a hybridization assay. There was no detectable signal for total ruminal bacterial DNA. The specificity of this DNA fragment was exploited to enumerate strain B14 in a fresh mixed suspension of ruminal bacteria in vitro and after inoculation of the strain into the rumen. In vitro strain B14 had a half-life of 9 h. However, following inoculation into the rumen there was a very rapid loss of the strain to below the detectable limit within 3 h. The half-life was less than 30 min. This loss was not due to ruminal dilution or to bacteriophage attack but was possibly the result of a specific bacteriocinlike activity present in the rumen and detectable in fresh ruminal fluid.  相似文献   

18.
Cloned fragments of genomic DNA from the ruminal anaerobe Bacteroides ruminicola subsp. brevis B14 were isolated and used as hybridization probes to identify closely related bacterial species. One DNA fragment unique to strain B14 was tested to determine its sensitivity in detecting homologous sequences among total ruminal microbial DNA. In a DNA titration experiment, the probe was capable of detecting strain B14 sequences in vitro down to 0.1% of the total bacterial DNA present in a hybridization assay. There was no detectable signal for total ruminal bacterial DNA. The specificity of this DNA fragment was exploited to enumerate strain B14 in a fresh mixed suspension of ruminal bacteria in vitro and after inoculation of the strain into the rumen. In vitro strain B14 had a half-life of 9 h. However, following inoculation into the rumen there was a very rapid loss of the strain to below the detectable limit within 3 h. The half-life was less than 30 min. This loss was not due to ruminal dilution or to bacteriophage attack but was possibly the result of a specific bacteriocinlike activity present in the rumen and detectable in fresh ruminal fluid.  相似文献   

19.
Streptococcus bovis is commonly present in the rumen, but strains of S. bovis have also occasionally been isolated from human blood or fecal samples. Studies were undertaken with 16s rRNA gene sequences and DNA hybridizations to define the genetic relationships between these two groups of strains. Ruminal strains were found to yield genomic DNA restriction endonuclease digest patterns different from human strains when either the 16s rRNA gene amplified from ruminal S. bovis strain JB1 or a conserved universal 23s rRNA fragment was used as probes. A DNA probe based on the V1 region of the 16s rRNA of S. bovis JB1 was found to hybridize to DNAs of other ruminal S. bovis strains K27FF4, 21-09-6C, five new ruminal isolates, and weak hybridization was found with DNAs from S. bovis 33317 (type strain), S. equinus 9812, and six other ruminal isolates. No hybridization occurred with strains representing different major human biotypes/homology groups (43143, 43144, 27960, V1387). All ruminal S. bovis strains had a guanosine plus cytosine DNA content of 37.4–38.8 mol% and, based on DNA-DNA genomic hybridizations, could be separated into two homology groups, one of which included S. equinus 9812 and S. bovis 33317. Both ruminal groups had less than 38% DNA homology to the human strains, indicating ruminal strains are clearly two separate species distinct from the human strains.  相似文献   

20.
Microbiome analysis of dairy cows fed pasture or total mixed ration diets   总被引:6,自引:0,他引:6  
Understanding rumen microbial ecology is essential for the development of feed systems designed to improve livestock productivity, health and for methane mitigation strategies from cattle. Although rumen microbial communities have been studied previously, few studies have applied next-generation sequencing technologies to that ecosystem. The aim of this study was to characterize changes in microbial community structure arising from feeding dairy cows two widely used diets: pasture and total mixed ration (TMR). Bacterial, archaeal and protozoal communities were characterized by terminal restriction fragment length polymorphism of the amplified SSU rRNA gene and statistical analysis showed that bacterial and archaeal communities were significantly affected by diet, whereas no effect was observed for the protozoal community. Deep amplicon sequencing of the 16S rRNA gene revealed significant differences in the bacterial communities between the diets and between rumen solid and liquid content. At the family level, some important groups of rumen bacteria were clearly associated with specific diets, including the higher abundance of the Fibrobacteraceae in TMR solid samples and members of the propionate-producing Veillonelaceae in pasture samples. This study will be relevant to the study of rumen microbial ecology and livestock feed management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号