首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulating erythrocytes from rats were examined up to 30 weeks post whole-body exposures of 1.0 R for alterations in the expression of net negative surface charge as measured by whole-cell microelectrophoresis in saline sorbitol. Erythrocyte electrophoretic mobility was determined in an apparatus composed of a horizontal transilluminated cylindrical chamber, equipped with a reversible, blacked platinum electrode, immersed in a water bath maintained at 25.0±0.1°C (Rank Brothers). In two separate experiments, recurrent decreases in the expression of net negative surface charge occurred at 10, 17, and 30 weeks post-irradiation. At these times distribution analyses of recorded erythrocyte electrophoretic mobility (EEPM) values revealed a skewing of the normally distributed EEPM population values to lower EEPM. Total sialic acid content released from hydrolyzed erythrocyte membrane preparations revealed no significant differences between erythrocytes from sham and irradiated animals. In vivo post-irradiation labeling of erythrocytes with diisopropyl-[32P] phosphorofluoridate at 4 and 33 weeks (separate experiments) indicated only a minor abbreviated erythrocyte life span at 33 weeks. Therefore, effects from low dose (1.0 R) whole-body irradiation would appear to include a recurrent defect in the expression of the net negative surface charge.  相似文献   

2.
Suzuki Y  Tateishi N  Maeda N 《Biorheology》1998,35(2):155-170
Electrostatic repulsion among erythrocytes in flow was evaluated through measurement of the thickness of the marginal cell-free layer in narrow glass tubes of 20-50 microns in inner diameter. To reduce the electrostatic repulsive force, due mainly to sialic acid of the membrane glycoproteins, human erythrocytes were treated with neuraminidase. The surface negative charge of the erythrocytes, as determined from the electrophoretic mobility using free-flow electrophoresis, was found to be proportional to the sialic acid content. When erythrocytes with decreased sialic acid content flowed through narrow tubes, the thickness of cell-free layer determined using an image processor increased even in the absence of erythrocyte aggregation in the suspension. The effect was more pronounced at acidic pH. The addition of Dextran T-70 (70,400 Mol. Wt.) further increased the cell-free layer thickness due to erythrocyte aggregation. Thus, reducing the negative charge density on the erythrocyte surface by itself accelerates the axial accumulation of erythrocytes in flow due to the decreased electrostatic repulsive force between the cells, even in the absence of erythrocyte aggregation.  相似文献   

3.
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).  相似文献   

4.
The influence of metabolites of arachidonic acids on the electrophoretic mobility of the rat erythrocytes has been investigated. It is found that they can increase or decrease the surface charge of the erythrocyte membranes.  相似文献   

5.
The peculiarities of frog erythrocyte electrophoretic mobility, coupled to the seasonal course of temperatures, have been studied. At the periods of anabiosis and of burst of hemopoiesis, in the vascular bed there increases the portion of functionally young erythrocytes (up to 22%) with increased values of the cell membrane surface charge. Preparation to winter is accompanied by a rise of the number of circulating functionally worn-down blood cells (up to 60%) with low values of the superficial charge and low mobility in electrical field. Use of the cell microelectrophoresis method of evaluation of seasonal activity of frog erythrocytes allows obtaining objective data about the cellular surface charge and its depending functional cell activity without submitting the erythrocytes to modifying actions.  相似文献   

6.
The effect of contrast medium SonoVue® on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H+ and OH? ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte’s or thrombocyte’s surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2–9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells.  相似文献   

7.
The binding of chlorpromazine · HCl at the human erythrocyte surface has been detected through its effect on cellular electrophoretic mobility. Incubation of erythrocytes (approx. 5 · 106/ml) in 23 μM chlorpromazine · HCl resulted in a reduction of negative electrophoretic mobility from the control value of ?1.11 ± 0.01 (μm · s?1)/(V · cm?1) to ?1.00 ± 0.02 (μm · s?1)/(V · cm?1) (pH 7.2, ionic strength 0.155). This mobility change was completely reversed when chlorpromazine · HCl was removed by centrifugal washing. Increasing the drug concentration to 70μM did not affect the mobility change, indicating saturation of the electrophoretically detectable drug binding sites over chlorpromazine · HCl concentration range studied here. The effect of the 23 μM chlorpromazine · HCl on electrophoretic mobility was also measured in isotonic media of reduced ionic strength. The drug-induced reduction in negative surface charge density was found to be independent of ionic strength over the range 0.155 (Debye length, 0.8 nm) to 0.00310 (Debye length, 5.7 nm).Fixation of erythrocytes with glutaraldehyde affected neither the normal electrophoretic mobility of discocytes nor the reduced electrophoretic mobility of chlorpromazine · HCl-induced stomatocytes. When these stomatocytes were first fixed with glutaraldehyde, then washed free of chlorpromazine · HCl, they retained the stomatocyte form while regaining a normal control electrophoretic mobility. Conversely, when discocytes fixed in that form were treated with chlorpromazine · HCl, they showed the same mobility change as did fixed or unfixed stomatocytes. The drug-induced mobility change is therefore independent of the shape change, but reflects a contribution to cellular surface charge density from the membrane-bound chlorpromazine · HCl molecules. From the charge reduction, it is estimated that about 106 chlorpromazine · HCl molecules are bound at the electrokinetic cell surface and occupy approximately 0.4% of the total surface area.  相似文献   

8.
The electrophoretic mobility of 13 human diploid cell strains, TIG-1, TIG-2, TIG-3, TIG-7, WI-38, IMR-90, MRC-5, MRC-9, TIG-1H, TIG-1L, TIG-2M, TIG-2B, and TIG-3S, which were established from different tissues of human embryos, was studied at different passages. The net negative surface charge of the cells was characteristic for each cell strain and decreased significantly during the in vitro aging of the cells. The decrease in the net negative charge of the cells correlated well with the decrease in cell density throughout the life span of the cells. A strict linear correlation between the electrophoretic mobility and the number of cells harvested at each passage was obtained for all the human diploid cell strains. Moreover, almost the same linear regression coefficient of the cells was obtained among these cell strains. Therefore, the net negative surface charge of human diploid cell strains could serve as a cell surface marker for in vitro cellular aging.  相似文献   

9.
WHEN aqueous solutions of two polymers are mixed in certain proportions they may form two-phase systems1,2 which can be buffered and used to partition and separate cells, particles and macromolecules by countercurrent distribution (CCD). Partition generally depends on polymer composition and concentration, the ionic composition and the charge sign of the material being partitioned. Such systems have been used to separate erythrocytes from white cells and erythrocytes on the basis of age. Changes in the surface properties of cells resulting from enzyme treatment or storage have also been demonstrated by this means3. Higher cell partition often accompanies increasing electrophoretic mobility which suggests that surface charge may be an important factor in partitioning4–6. An apparent exception to this is the increased partition of stored human erythrocytes as compared with fresh7, as opposed to the mean electrophoretic mobility of both cell populations which remain identical8.  相似文献   

10.
The objective of this investigation was to evaluate postmortem changes of electric charge of human erythrocytes and thrombocytes after fatal carbon monoxide (CO) poisoning. The surface charge density values were determined on the basis of the electrophoretic mobility measurements of the cells carried out at various pH values of electrolyte solution. The surface charge of erythrocyte membranes after fatal CO poisoning as well as after sudden unexpected death increased compared to the control group in the whole range of experimental pH values. Also, a slight shift of the isoelectric point of erythrocyte membranes to high pH values was observed. The surface charge of thrombocyte membranes after fatal CO poisoning decreased at low pH compared to the control group. However, at high pH, the values increased compared to the control group. The isoelectric point of thrombocyte membranes after fatal CO poisoning was considerably shifted toward low pH values compared to the control group. The observed changes are probably connected with the destruction of blood cell structure.  相似文献   

11.
H.Y. Nakatani  J. Barber 《BBA》1980,591(1):82-91
1. Above pH 4.3 the outer surface of thylakoid membranes isolated from pea chloroplasts is negatively charged but below this value it carries an excess of positive charge.2. Previously the excess negative charge has been attributed to the carboxyl groups of glutamic and aspartic acid residues (Nakatani, H.Y., Barber, J. and Forrester, J.A. (1978), Biochim. Biophys. Acta 504, 215–225) and in this paper it is argued from experiments involving treatments with 1,2-cyclohexanedione that the positive charges are partly due to the guanidino group of arginine.3. The electrophoretic mobility of granal (enriched in chlorophyll b and PS II activity) and stromal (enriched in PS I activity) lamellae isolated by the French Press technique were found to be the same.4. Treatment of the pea thylakoids with trypsin or pronase, sufficient to inhibit the salt induced chlorophyll fluorescence changes, increased their electrophoretic mobility indicating that additional negative charges had been exposed at the surface.5. Polylysine treatment also inhibited the salt induced chlorophyll fluorescence changes but unlike trypsin and pronase, decreased the net negative charge on the surface.6. The isoelectric point defined as the pH which gave zero electrophoretic mobility (about 4.3) was independent of the nature of the cations in the suspending medium (monovalent vs. divalent).  相似文献   

12.
Critical mixtures of aqueous solutions os polymers separate into two or more immiscible phases. Particulate materials distribute in such phase systems generally between one bulk phase and the interface between bulk phases. The distribution is described by a simple partition law, and is qunatitatively determined by, inter alia, the nature of the particle surface, particularly net electrical charge. The partition behaviour of various cells, native or modified by treatment with trypsin, neurominidase or maleic anhydride, correlate strongly with electrophoretic mobility. Partition behaviour and electrophoretic mobility are both dependent upon cell surface charge. Thus, in appropriate conditions, changes in surface charge may be registered as changes in partition.  相似文献   

13.
1. Chromaffin granules isolated from the bovine adrenal medulla possess an electrophoretic mobility of -1.12mum.s(-1).cm.V(-1), corresponding to a surface zeta potential of -14.4mV and surface charge density of 1.38x10(-6)C.cm(-2). 2. The mobility of chromaffin granules is pH-dependent, indicating an amphoteric surface with an isoelectric point at pH3.0 and acidic groups with a pK(a) of 3.11. 3. Addition of bi- and ter-valent cations decreased the mobility of chromaffin granules in a dose-dependent fashion with a relative potency of La(3+)>Mn(2+)>Ca(2+) >Sr(2+)>Mg(2+)>Ba(2+). 4. Treatment with neuraminidase decreased the mobility of erythrocytes by 84%, whereas chromaffin-granule mobility was decreased by only 14%. This correlates well with the small complement of neuraminic acid present in the granule membrane. 5. The nature, origin and significance of the anionic surface charge of the chromaffin granule is discussed. It is concluded that the net negative charge at the surface of shear derives chiefly from a single type of chemical group, namely -CO(2) (-), contributed by the alpha-carboxyl group of constituent proteins, the phospholipid phosphatidylserine and, to a lesser extent, the sialic acid component of glycoproteins.  相似文献   

14.
It was shown that the treatment of erythrocytes with low concentrations of glutaraldehyde (0.01-0.1%) for 30-120 min to a variable extent the aggregation induced by 40-330 microM La3+. The effect of glutaraldehyde on the aggregation increased with concentration and time of fixation. La3+ ions decreased to a similar extent the electrophoretic mobility of intact erythrocytes and erythrocytes treated with 0.1% glutaraldehyde. No relationship was found between the change in the negative charge on the erythrocytes and the degree of their aggregation. Neuraminidase and trypsin were shown to decrease the surface charge on the erythrocytes and the aggregation of fixed erythrocytes.  相似文献   

15.
Mouse L cells grown in suspension culture when treated with L cell interferon have a greater electrophoretic mobility toward the anode than control cells. This change in electrophoretic mobility depends on the concentration of interferon in the medium and the duration of interferon interaction with the cells. It is concluded that the interferon-treated cells have a greater net negative charge on the cell surface than control cells and it is suggested that the cell surface is altered because of the interaction with interferon.  相似文献   

16.
Adsorption of cations to phosphatidylinositol 4,5-bisphosphate   总被引:7,自引:0,他引:7  
We investigated the binding of physiologically and pharmacologically relevant ions to the phosphoinositides by making 31P NMR, electrophoretic mobility, surface potential, and calcium activity measurements. We studied the binding of protons to phosphatidylinositol 4,5-bisphosphate (PIP2) by measuring the effect of pH on the chemical shifts of the 31P NMR signals from the two monoester phosphate groups of PIP2. We studied the binding of potassium, calcium, magnesium, spermine, and gentamicin ions to the phosphoinositides by measuring the effect of these cations on the electrophoretic mobility of multilamellar vesicles formed from mixtures of phosphatidylcholine (PC) and either phosphatidylinositol, phosphatidylinositol 4-phosphate, or PIP2; the adsorption of these cations depends on the surface potential of the membrane and can be described qualitatively by combining the Gouy-Chapman theory with Langmuir adsorption isotherms. Monovalent anionic phospholipids, such as phosphatidylserine and phosphatidylinositol, produce a negative electrostatic potential at the cytoplasmic surface of plasma membranes of erythrocytes, platelets, and other cells. When the electrostatic potential at the surface of a PC/PIP2 bilayer membrane is -30 mV and the aqueous phase contains 0.1 M KCl at pH 7.0, PIP2 binds about one hydrogen and one potassium ion and has a net charge of about -3. Our mobility, surface potential, and electrode measurements suggest that a negligible fraction of the PIP2 molecules in a cell bind calcium ions, but a significant fraction may bind magnesium and spermine ions.  相似文献   

17.
The Surface of the Washed Human Erythrocyte as a Polyanion   总被引:7,自引:0,他引:7       下载免费PDF全文
The electrokinetic behaviour of normal erythrocytes is compared with that of trypsin-, N-bromosuccinimide-, and tosyl-treated erythrocytes. Reduction in the net negative charge with reduction in ionic strength of the suspending medium and also on treatment with N-bromosuccinimide and trypsin is discussed using a porous non-rigid polyanion as a model for the periphery of the cell membrane. It is deduced from the equivalent binding of chloride and thiocyanate ions and the absence of any effect on treatment of red cells with tosyl chloride, that normal, N-bromosuccinimide- and trypsin-treated cells are polyanionic in character. Reduction in erythrocyte charge on treatment with N-bromosuccinimide or trypsin is probably not due to the removal of phosphate groups from the interface, nor to physical adsorption of N-bromosuccinimide or trypsin. The charge reduction is probably produced by bond fission with possibly a net disappearance of carboxyl groups from the electrophoretic plane of shear either by loss from, or reorientation of, the membrane. The loss or reorientation of material associated with these carboxyl groups does not lead to any basic change in the character of the surface of the cell, nor to any obvious structural instability. The biconcave discoid form is maintained and there is no significant hemolysis of the erythrocytes even after contact with a solution of trypsin for 24 hours.  相似文献   

18.
An attempt was made to analyze the electrophoretic mobility data of human erythrocytes in media of different pH values and ionic strengths through cell surface models in which the surface charge layer consists of several ion-penetrable sublayers with a uniform charge distribution in each sublayer. As a result, the three-sublayer model was found to explain the mobility data much better than the two-sublayer model in a wide range of ionic strength at all pH values studied.  相似文献   

19.
In an effort to model the interaction of lipid-based DNA delivery systems with anionic surfaces, such as a cell membrane, we have utilized microelectrophoresis to characterize how electrokinetic measurements can provide information on surface charge and binding characteristics. We have established that cationic lipids, specifically N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC), incorporated into liposomes prepared with 1, 2-dioleoyl-i-glycero-3-phosphoethanolamine (DOPE) or 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 50 mol%, change the inherent electrophoretic mobility of anionic latex polystyrene beads. Self-assembling lipid-DNA particles (LDPs), prepared at various cationic lipid to negative DNA phosphate charge ratios, effected no changes in bead mobility when the LDP charge ratio (+/-) was equal to or less than 1. Increasing the LDP concentration in a solution of 0.1% (w/v) anionic beads resulted in a charge reversal effect when a net charge of LDP to total bead charge ratio (+/-) of 1:1 was observed. LDP formulations, utilizing either DOPE or DOPC, showed similar titration profiles with a charge reversal observed at a 1:1 net LDP to bead charge ratio (+/-). It was confirmed through centrifugation studies that the DNA in the LDP was associated with the anionic latex beads through electrostatic interactions. LDP binding, rather than the binding of dissociated cationic lipids, resulted in the observed electrophoretic mobility changes of the anionic latex beads.  相似文献   

20.
Activation of human blood T lymphocytes in mixed lymphocyte culture (MLC) causes a reduction in the net negative surface charge, as indicated by the reduction in the electrophoretic mobility. Concomitantly, the activated cells acquire new properties, including the ability to form “stable” E rosettes, and attach to normal and malignant cells of the same species (natural attachment (NA)). These properties were found to be expressed by lymphocytes within the low electrophoretic fractions (cells with low negative charge) of the MLC populations. The formation of stable E rosettes and natural attachment capacities of human thymocytes were also found to correlate with the amount of surface negative charge. The slowly migrating (less negative charged) cortical thymocytes, reported earlier as being able to form stable E rosettes, were found also to exhibit NA activity. Medullary thymocytes carrying a high net negative surface charge lack these characteristics. We consider it likely that the reduction of negative charge during activation of peripheral T cells, facilitates cell-to-cell contacts, and thus prepares the (activated) cells to perform cooperative interactions with other cell types, and express the lytic activity of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号