首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The facultative intracellular bacterium Listeria monocytogenes is an invasive pathogen that crosses the vascular endothelium and disseminates to the placenta and the central nervous system. Its interaction with endothelial cells is crucial for the pathogenesis of listeriosis. By infecting in vitro human umbilical vein endothelial cells (HUVEC) with L. monocytogenes, we found that wild-type bacteria induced the expression of the adhesion molecules (ICAM-1 and E-selectin), chemokine secretion (IL-8 and monocyte chemotactic protein-1) and NF-kappa B nuclear translocation. The activation of HUVEC required viable bacteria and was abolished in prfA-deficient mutants of L. monocytogenes, suggesting that virulence genes are associated with endothelial cell activation. Using a genetic approach with mutants of virulence genes, we found that listeriolysin O (LLO)-deficient mutants inactivated in the hly gene did not induce HUVEC activation, as opposed to mutants inactivated in the other virulence genes. Adhesion molecule expression, chemokine secretion and NF-kappa B activation were fully restored by a strain of Listeria innocua transformed with the hly gene encoding LLO. The relevance in vivo of endothelial cell activation for listerial pathogenesis was investigated in transgenic mice carrying an NF-kappa B-responsive lacZ reporter gene. NF-kappa B activation was visualized by a strong lacZ expression in endothelial cells of capillaries of mice infected with a virulent haemolytic strain, but was not seen in those infected with a non-haemolytic isogenic mutant. Direct evidence that LLO is involved in NF-kappa B activation in transgenic mice was provided by injecting intravenously purified LLO, thus inducing stimulation of NF-kappa B in endothelial cells of blood capillaries. Our results demonstrate that functional listeriolysin O secreted by bacteria contributes as a potent inflammatory stimulus to inducing endothelial cell activation during the infectious process.  相似文献   

2.
3.
Probiotic bacteria are microorganisms that benefit the host through improvement of the balance of intestinal microflora and possibly by augmentation of host defense systems. We examined the mechanisms for the up-regulation of innate immune responses by a probiotic Lactobacillus casei ATCC27139, in vivo. Using mouse models of systemic Listeria monocytogenes infection and MethA fibrosarcoma tumorigenesis in combination with BALB/c and SCID mice, we found that parenteral administration of L. casei ATCC27139 confers a protective effect against L. monocytogenes infection and anti-tumor activity against MethA fibrosarcoma by activation of innate immunity, while L. casei ATCC27139-J1R strains, which are J1 phage-resistant strains that have been selected from MNNG-treated clones, lacked these activities. Substantial differences between ATCC27139 and ATCC27139-J1R strains were observed in the capacity to induce innate cytokines such as TNF-alpha, IL-12, IL-18, and IFN-gamma, and pathogen-associated molecular pattern receptors, TLR2 and Nod2, by spleen cells. In addition, although phosphorylation of NF-kappaB p65 in spleen was equally enhanced in the ATCC27139- and the ATCC27139-J1R-treated groups, phosphorylation of both p38 MAPK and MAPKAPK-2 was significantly induced only by ATCC27139. Furthermore, inhibitors of NF-kappaB (sulfasalazine) and p38 MAPK (SB203580) significantly reduced cytokine production by the spleen cells of the mice treated with L. casei ATCC27139, suggesting that both NF-kappaB and p38 MAPK signaling pathways play important roles in the augmentation of innate immunity by the probiotic L. casei.  相似文献   

4.
5.
6.
Listeria monocytogenes is the causative agent of infections like sepsis and meningitis, especially in immunocompromised hosts. Human macrophages are able to phagocytose and digest L. monocytogenes but IL-4 prevents human macrophages from killing the bacteria, the mechanisms of which are unknown. In the present study, we examined various listeria species and strains including wild-type and deletion mutants in human macrophages pretreated with IL-4. To analyse the IL-4-mediated deactivation process, we combined quantitative infection assays with various morphologic methods. IL-4 facilitates survival and escape of the pathogenic L. monocytogenes wild-type strain 10403S from the macrophage phagosomes. In untreated macrophages, the isogenic listeriolysin deletion mutant strain DP-L2161 was killed and did not escape from the phagolysosomes. However, after macrophage deactivation with IL-4 DP-L2161 survived and escaped from the phagosomes. This was also the case, but to a lesser extent, even for the naturally avirulent L. innocua. As detected by confocal laser-scanning fluorescence microscopy and electron microscopy, IL-4 permitted the escape of all listeria species tested, including DP-L2161 and L. innocua from the phagosomal compartment of the macrophages. We conclude that escape from the phagosome and survival of the listeria species tested in IL-4-deactivated human macrophages is independent of the virulence factor listeriolysin.  相似文献   

7.
8.
9.
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.  相似文献   

10.
Listeria monocytogenes induces apoptosis in vitro and in vivo in a variety of cell types. However, the mechanism of cell death in L. monocytogenes -infected macrophages was initially reported to be distinct from apoptosis. Here, we studied the mechanism of L. monocytogenes -induced cell death using sensitive fluorescent techniques. We found that caspase-1 activation preceded cell death of macrophages infected with L. monocytogenes , using fluorogenic substrates. Caspase-1 activation was diminished after infection with wild-type L. monocytogenes when cells were treated with NH4Cl, or if they were infected with a listeriolysin mutant that cannot escape from the phagolysosome. Mitochondrial membrane integrity was preserved during the infection. A particular mechanism of cell death, recently termed 'pyroptosis', is associated with infection by intracellular microorganisms, and has an inherent pro-inflammatory character, due to involvement of caspase-1 activation with consequent IL-1β and IL-18 production. Cell death through caspase-1 activation would constitute a defence mechanism of macrophages which induces cell death to eliminate the bacteria's intracytosolic niche and recruits early host's defences through the secretion of inflammatory cytokines.  相似文献   

11.
Nod2 is an intracellular innate immune receptor that plays a role in host defense and susceptibility to inflammatory disease. We show in this study that macrophages rendered refractory to TLR4 and Nod2 signaling by exposure to LPS and muramyl dipeptide (MDP) exhibit impaired TNF-alpha and IL-6 production in response to pathogenic Listeria monocytogenes and Yersinia pseudotuberculosis as well as commensal bacteria including Escherichia coli and Bacteroides fragilis. Surprisingly, Nod2 deficiency was associated with impaired tolerization in response to pathogenic and commensal bacteria. Mechanistically, reduced tolerization of Nod2-null macrophages was mediated by recognition of bacteria through Nod1 because it was abolished in macrophages deficient in Nod1 and Nod2. Consistently, Nod2-null macrophages tolerant to LPS and MDP showed enhanced production of TNF-alpha and IL-6 as well as increased NF-kappaB and MAPK activation in response to the dipeptide KF1B, the Nod1 agonist. Furthermore, reduced tolerization of Nod2-deficient macrophages in response to bacteria was abolished when mutant macrophages were also rendered tolerant to the Nod1 ligand. Finally, MDP stimulation induced refractoriness not only to MDP, but also to iE-DAP stimulation, providing a mechanism to explain the reduced tolerization of Nod2-deficient macrophages infected with bacteria. These results demonstrate that cross-tolerization between Nod1 and Nod2 leads to increase recognition of both pathogenic and commensal bacteria in Nod2-deficient macrophages pre-exposed to microbial ligands.  相似文献   

12.
The contact of T cells to cross-reactive antigenic determinants expressed by nonpathogenic environmental micro-organisms may contribute to the induction or maintenance of T cell memory. This hypothesis was evaluated in the model of murine Listeria monocytogenes infection. The influence of nonpathogenic L. innocua on the L. monocytogenes p60-specific T cell response was analyzed. We show that some CD4 T cell clones raised against purified p60 from L. monocytogenes cross-react with p60 purified from L. innocua. The L. monocytogenes p60-specific CD4 T cell clone 1A recognized the corresponding L. innocua p60 peptide QAAKPAPAPSTN, which differs only in the first amino acid residue. In vitro experiments revealed that after L. monocytogenes infection of APCs, MHC class I-restricted presentation of p60 occurs, while MHC class II-restricted p60 presentation is inhibited. L. innocua-infected cells presented p60 more weakly but equally well in the context of both MHC class I and MHC class II. In contrast to these in vitro experiments the infection of mice with L. monocytogenes induced a strong p60-specific CD4 and CD8 T cell response, while L. innocua infection failed to induce p60-specific T cells. L. innocua booster infection, however, expanded p60-specific memory T cells induced by previous L. monocytogenes infection. In conclusion, these findings suggest that infection with a frequently occurring environmental bacterium such as L. innocua, which is nonpathogenic and not adapted to intracellular replication, can contribute to the maintenance of memory T cells specific for a related intracellular pathogen.  相似文献   

13.
Abstract Listeria monocytogenes replicates in a phagocytic cell following escape into the host cytoplasm. Listeriolysin O, secreted by L. monocytogenes , which belongs to the thiol-activated hemolysin family, is known to play an important role in the escape of the bacterium into the host cytoplasm. In this study, we demonstrated that expression of listeriolysin O by infecting L. monocytogenes was lightly induced in J774.1 macrophage-like cells pretreated with lipopolysaccharide, although the growth of the bacteria was suppressed. The number of viable L. monocytogenes decreased until 4 h post-infection and then increased between 4 and 8 h post-infection in untreated J774.1 host cells, but it decreased until 8 h post-infection in lipopolysaccharide-treated host cells. However, expression of listeriolysin O by L. monocytogenes was not induced in the untreated host cells, while it increased between 0 and 4 h post-infection in the lipopolysaccharide-treated host cells. Expression of listeriolysin O mRNA in the lipopolysaccharide-treated host cells was also induced at 2 h post-infection, suggesting that listeriolysin O was newly synthesized in the macrophage-like cells. These results suggest that macrophage activation induced with lipopolysaccharide could lead to the expression of the listeriolysin O gene and the synthesis of listeriolysin O protein under suppression of the intracellular growth of L. monocytogenes .  相似文献   

14.
We investigated the effect of heat-killed Listeria monocytogenes (HKLM) on the expression of vascular endothelial growth factor (VEGF) in RAW264.7 macrophage-like cells. The expression of VEGF was induced in RAW264.7 cells treated with HKLM. Pretreatment of cells with cycloheximide, a protein synthesis inhibitor, inhibited the induction of VEGF mRNA by HKLM. Induction of VEGF by HKLM was partially inhibited by treatment of cells with SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor, or a neutralizing antibody against tumor necrosis factor-alpha (TNF-alpha). In addition, HKLM induced phosphorylation of p38 MAPK. These results suggest that p38 MAPK and TNF-alpha are involved in the VEGF expression induced by HKLM in RAW264.7 cells. We confirmed that increased VEGF expression is immunohistochemically detected in splenic macrophages of mice infected with L. monocytogenes (L. monocytogenes). VEGF is thought to be involved in inflammatory reactions induced by L. monocytogenes infection.  相似文献   

15.
16.
17.
Listeriolysin O (LLO) is a pore-forming cytolysin secreted by the pathogen Listeria monocytogenes and is required for its intracellular survival. We recently demonstrated that in endothelial cells, LLO activates the NF-kappaB signalling pathway. In this work, we studied the LLO-induced molecular cascade of NF-kappaB activation with a cellular model extensively used to analyse the signalling pathway of NF-kappaB activation, i.e. the human embryonic kidney HEK-293 cell line and its derivatives (transfectants or mutants). When the stably transfected derivative HEK-293 cells expressing IL-1RI were exposed to LLO, a strong NF-kappaB activation was detected, contrasting with other cell lines (HEK-293 wild type, HEK-293.T and COS) expressing a very low level of IL-1RI. Although a delayed kinetics of LLO-dependent NF-kappaB activation suggests an autocrine or paracrine IL-1-dependent pathway, we found that LLO-dependent NF-kappaB activation did not require the IL-1 protein synthesis nor the interaction with the IL-1RI specific receptor. Herein, we demonstrated that LLO-dependent NF-kappaB activation requires the activation of the IkappaB kinase beta (IKKbeta) subunit of IKK complex to phosphorylate and degrade cytoplasmic IkappaBalpha, a natural inhibitor of NF-kappaB. The activation induced by LLO does not require the adapters MyD88 and IL-1R-associated kinase (IRAK). We suggested that LLO induces a distinct signalling pathway from that of IL-1 and its receptor.  相似文献   

18.
Protective immunity to the intracellular bacterial pathogen, Listeria monocytogenes, is mediated by a vigorous T cell response. In particular, CD8(+) cytolytic T cells provide essential effector function in the clearance of bacterial infection. The cytoplasmic entry of Listeria facilitated by listeriolysin O is an essential feature not only of the bacteria's virulence, but of the ability of the bacteria to elicit protective immunity in the host. To determine how cytoplasmic entry of Listeria regulates the development of protective immunity, we examined the effects of this process on the maturation of murine dendritic cells (DC) and on their ability to prime naive CD8(+) T cell responses. Costimulatory molecules (CD40, CD80, and CD86) were induced by listerial infection only when the bacteria invaded the cytoplasm. In addition, the production of IL-12, IL-10, IL-6, and TNF-alpha was most efficiently triggered by cytosolic Listeria. Naive T cells primed by peptide-loaded DC infected with either wild-type or nonhemolytic mutant Listeria proliferated equivalently, but a much larger proportion of those primed by wild-type Listeria monocytogenes produced IFN-gamma. Costimulatory molecules induced by cytosolic entry regulated T cell proliferation and, as a result, the number of functional T cells generated. DC-produced cytokines (specifically IL-12 and IL-10) were the major factors determining the proportion of T cells producing IFN-gamma. These data highlight the requirement for listerial cytoplasmic invasion for the optimal priming of T cell cytokine production and attest to the importance of this event to the development of protective CTL responses to this pathogen.  相似文献   

19.
20.
Nucleotide-binding oligomerization domain-containing proteins (Nods) are intracellular pattern recognition receptors recognizing conserved moieties of bacterial peptidoglycan through their leucine-rich repeats domain. The agonists for Nods activate proinflammatory signaling pathways, including NF-kappaB pathways. The results from our previous studies showed that the activation of TLR4 and TLR2, leucine-rich repeat-containing pattern recognition receptors, were differentially modulated by saturated and n-3 polyunsaturated fatty acids in macrophages and dendritic cells. Here, we show the differential modulation of NF-kappaB activation and interleukin-8 (IL-8) expression in colonic epithelial cells HCT116 by saturated and unsaturated fatty acids mediated through Nods proteins. Lauric acid (C12:0) dose dependently activated NF-kappaB and induced IL-8 expression in HCT116 cells, which express both Nod1 and Nod2, but not detectable amounts of TLR2 and TLR4. These effects of lauric acid were inhibited by dominant negative forms of Nod1 or Nod2, but not by dominant negative forms of TLR2, TLR4, and TLR5. The effects of lauric acid were also attenuated by small RNA interference targeting Nod1 or Nod2. In contrast, polyunsaturated fatty acids, especially n-3 polyunsaturated fatty acids, inhibited the activation of NF-kappaB and IL-8 expression induced by lauric acid or known Nods ligands in HCT116. Furthermore, lauric acid induced, but docosahexaenoic acid inhibited lauric acid- or Nod2 ligand MDP-induced, Nod2 oligomerization in HEK293T cells transfected with Nod2. Together, these results provide new insights into the role of dietary fatty acids in modulating inflammation in colon epithelial cells. The results suggest that Nods may be involved in inducing sterile inflammation, one of the key etiological conditions in the development of many chronic inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号