首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghersi G  Chen W  Lee EW  Zukowska Z 《Peptides》2001,22(3):453-458
Recently, we have discovered that neuropeptide Y (NPY), a sympathetic neurotransmitter, is also present in human umbilical endothelial cells (HUVECs), and is potently chemotactic and angiogenic by acting on one or several of Y1-Y5 receptors. In HUVECs, NPY is co-localized with dipeptidyl peptidase IV (DPPIV) which cleaves Tyr(1)-Pro(2) from NPY(1-36) to form NPY(3-36) resulting in the formation of a non-Y1 receptor agonist, which remains angiogenic. Presently we studied the effects of DPPIV's blockade using monoclonal antibodies (mAbs) on migration of HUVECs in response to NPY(1-36) or NPY(3-36) following cell wounding. Both peptides caused similar dose-dependent increases in cell migration (+80% at 0.1 nM) 12 h after wounding. DPPIV mAbs, E19 and E26, significantly reduced HUVEC's migration below that of the untreated cells, and blocked responses to NPY(1-36) but not NPY(3-36). Enhanced expression of DPPIV was found in the migrating cells and in cells with their protrusions at the edge of the wound (immunostaining and Western blot). Thus, DPPIV's expression is stimulated by endothelial wounding and its enzymatic activity is required for NPY-mediated chemotaxis. Furthermore, this suggests that non-Y1 receptors activated by NPY(3-36) (Y2, Y3 and/or Y5) mediate angiogenic effects of NPY.  相似文献   

2.
Neuropeptide Y (NPY(1-36)), a sympathetic cotransmitter and neurohormone, has pleiotropic activities ranging from the control of obesity to anxiolysis and cardiovascular function. Its actions are mediated by multiple Gi/o-coupled receptors (Y1-Y5) and modulated by dipeptidyl peptidase IV (DPPIV/cd26), which inactivates NPY's Y1-agonistic activity but generates the Y2 and Y5-agonist, NPY(3-36). Released by sympathetic activity, NPY is a major mediator of stress, responsible for prolonged vasoconstriction via Y1 receptors. Y1 receptors also mediate NPY's potent vascular growth-promoting activity leading in vivo in rodents to neointima formation. This and the association of a polymorphism of the NPY signal peptide with increased lipidemia and carotid artery thickening in humans strongly suggest NPY's role in atherosclerosis. NPY and DPPIV/cd26 are also coexpressed in the endothelium, where the peptide activates angiogenesis. A similar system exists in immune cells, where NPY and DPPIV/cd26 are coactivated and involved in the modulation of cytokine release and immune cell functions. Thus, NPY, both a messenger and a modulator for all three systems, is poised to play an important regulatory role facilitating interactions among sympathetic, vascular and immune systems in diverse pathophysiological conditions such as hypertension, atherosclerosis and stress-related alterations of immunity.  相似文献   

3.
Kuo LE  Abe K  Zukowska Z 《Peptides》2007,28(2):435-440
Neuropeptide Y (NPY) has long been known to be involved in stress, centrally as an anxiolytic neuromodulator, and peripherally as a sympathetic nerve- and in some species, platelet-derived vasoconstrictor. The peptide is also a vascular mitogen, via Y1/Y5, and is angiogenic via Y2/Y5 receptors. Arterial injury activates platelet NPY and vascular Y1 receptors, inducing medial hypertrophy and neointima formation. Exogenous NPY, dipeptidyl peptidase IV (DPPIV, forming an Y2/Y5-selective agonist) and chronic stress augment these effects and occlude vessels with atherosclerotic-like lesions, containing thrombus and lipid-laden macrophages. Y1 antagonist blocks stress-induced vasoconstriction and post-angioplasty occlusions, and hence may be therapeutic in angina and atherosclerosis/restenosis. Conversely, tissue ischemia activates neuronal and platelet-derived NPY, Y2/Y5 and DPPIV, which stimulate angiogenesis/arteriogenesis. NPY-Y2-DPPIV agonists may be beneficial for ischemic revascularization and wound healing, whereas antagonists may be therapeutic in retinopathy, tumors, and obesity. Since stress is an underestimated risk factor in many of these conditions, NPY-based drugs may offer new treatment possibilities.  相似文献   

4.
We evaluated the effects of dipeptidyl peptidase-IV (DPPIV), and its inhibitor, vildagliptin, on adipogenesis and lipolysis in a pre-adipocyte murine cell line (3T3-L1). The exogenous rDPPIV increased lipid accumulation and PPAR-γ expression, whereas an inhibitor of DPPIV, the anti-diabetic drug vildagliptin, suppresses the stimulatory role of DPPIV on adipogenesis and lipid accumulation, but had no effect on lipolysis. NPY immunoneutralization or NPY Y(2) receptor blockage inhibited DPPIV stimulatory effects on lipid accumulation, collectively, indicating that DPPIV has an adipogenic effect through NPY cleavage and subsequent NPY Y(2) activation. Vildagliptin inhibits PPAR-γ expression and lipid accumulation without changing lipolysis, suggesting that this does not impair the ability of adipose tissue to store triglycerides inside lipid droplets. These data indicate that DPPIV and NPY interact on lipid metabolism to promote adipose tissue depot.  相似文献   

5.
It is generally accepted that angiogenesis is delayed in aging. To define the effects of age on the neovascular response, polyvinyl alcohol sponges were implanted SC in young (6-8 months old, n=11) and aged (23-25 months old, n=13) mice and sampled at 14 and 19 days. Angiogenic invasion was significantly delayed in aged mice at 14d relative to young at 14d (% area of invasion 9.0 +/- 3.7 vs 19.0 +/- 5.6; p=0.02). Although microvessel morphology and basement membrane composition were similar between the age groups, a significant decrease in capillary density was noted in aged tissues at 14d (7.5 +/- 4.1) and 19d (12.1 +/- 2.8) relative to young at 14d (18.7 +/- 2.3) (p<0.01 A14d vs Y14d). In comparison to young at 14d, the inflammatory response was decreased by 43 +/- 2.9% and 36 +/- 7.8% in aged mice at 14d and 19d, respectively. Tissues of aged mice showed less newly deposited collagen. There was a lack of expression of transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor (VEGF) in aged mice at 14d (0.63 +/- 0.3) and 19d (1.14 +/- 0.5) vs young at 14d (1.92 +/- 0.5) (p< or =0.01 A14d vs Y14d for VEGF). However, similar production of VEGF receptor2 was observed. In contrast to young mice, there was significantly increased expression of thrombospondin-2 (TSP-2) in aged mice from 14d (14.6 x 10(3) +/- 7.3 x 10(3)) to 19d (34.9 x 10(3) +/- 17 x 10(3)). We conclude that angiogenesis in aging is not merely delayed, but is altered due to multiple impairments.  相似文献   

6.
Accumulating data implicate a pathological role for sympathetic neurotransmitters like neuropeptide Y (NPY) in breast cancer progression. Our group and others reported that NPY promotes proliferation and migration in breast cancer cells, however the angiogenic potential of NPY in breast cancer is unknown. Herein we sought to determine if NPY promotes angiogenesis in vitro by increasing vascular endothelial growth factor (VEGF) expression and release from 4T1 breast cancer cells. Western blot analysis revealed that NPY treatment caused a 52 ± 14% increase in VEGF expression in the 4T1 cells compared to non-treated controls. Using selective NPY Y-receptor agonists (Y1R, Y2R and Y5R) we observed an increase in VEGF expression only when cells were treated with Y5R agonist. Congruently, using selective Y1R, Y2R, or Y5R antagonists, NPY-induced increases in VEGF expression in 4T1 cells were attenuated only under Y5R antagonism. Endothelial tube formation assays were conducted using conditioned media (CM) from NPY treated 4T1 cells. Concentration-dependent increases in number of branch points and complete endothelial networks were observed in HUVEC exposed to NPY CM. CM from Y5R agonist treated 4T1 cells caused similar increases in number of branch points and complete endothelial networks. VEGF concentration was quantified in CM (ELISA) from agonist experiments; we observed a 2-fold and 2.5-fold increase in VEGF release from NPY and Y5R agonist treated 4T1 cells respectively. Overall these data highlight a novel mechanism by which NPY may promote breast cancer progression, and further implicate a pathological role of the NPY Y5R.  相似文献   

7.

Background

Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear.

Methodology/Principal Findings

We thus generated two conditional knockout mouse models, Y2lox/lox and NPYCre/+;Y2lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver cartinine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons.

Conclusions/Significance

Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.  相似文献   

8.
To study the effect of NPY deletion on the regulation of its receptors in the NPY knockout (NPY KO) mice, the expression and binding of NPY receptors were investigated by in situ hybridization and receptor autoradiography using (125)I-[Leu(31),Pro(34)]PYY and (125)I-PYY(3-36) as radioligands. A 6-fold increase in Y2 receptor mRNA was observed in the CA1 region of the hippocampus in NPY KO mice, but a significant change could not be detected for Y1, Y4, Y5 and y6 receptors. Receptor binding reveals a 60-400% increase of Y2 receptor binding in multiple brain areas. A similar increase in Y1 receptor binding was seen only in the hypothalamus. These results demonstrate the NPY receptor expression is altered in mice deficient for its natural ligand.  相似文献   

9.
Nadler JV  Tu B  Timofeeva O  Jiao Y  Herzog H 《Peptides》2007,28(2):357-364
In the epileptic brain, hippocampal dentate granule cells become synaptically interconnected through the sprouting of mossy fibers. This new circuitry is expected to facilitate epileptiform discharge. Prolonged seizures induce the long-lasting neoexpression of neuropeptide Y (NPY) in mossy fibers. NPY is released spontaneously from recurrent mossy fiber terminals, reduces glutamate release from those terminals by activating presynaptic Y2 receptors, and depresses granule cell epileptiform activity dependent on the recurrent pathway. These effects are much greater in rats than in C57BL/6 mice, despite apparently equivalent mossy fiber sprouting and neoexpression of NPY. This species difference can be explained by contrasting changes in the expression of mossy fiber Y2 receptors; seizures upregulate Y2 receptors in rats but downregulate them in mice. The recurrent mossy fiber pathway may synchronize granule cell discharge more effectively in humans and mice than in rats, due to its lower expression of either NPY (humans) or Y2 receptors (mice).  相似文献   

10.
Since NPY increases endothelial cell (EC) stickiness for leukocytes, we studied the effects of LPS, TNF-alpha and IFN-gamma on its expression and action in HUVEC. Cytokines raised NPY and pro-NPY intracellular content and dipeptidyl peptidase IV (DPP IV) activity. Y1 and Y2 receptors were expressed in basal conditions, and LPS, TNF-alpha and IFN-gamma induced Y5 receptor expression with a concomitant extinction of Y2 receptor expression. NPY induced an intracellular calcium increase mainly mediated by Y2 and Y5 receptors in basal conditions. After stimulation with LPS, TNF-alpha and IFN-gamma, calcium increase was mainly caused by Y5 receptor. The modulation of the NPY system by LPS, TNF-alpha and IFN-gamma, and the NPY-induced calcium signaling suggest a role for NPY during the inflammatory response.  相似文献   

11.
Prenatal stress, psychologically and metabolically, increases the risk of obesity and diabetes in the progeny. However, the mechanisms of the pathogenesis remain unknown. In adult mice, stress activates NPY and its Y2R in a glucocorticoid-dependent manner in the abdominal fat. This increased adipogenesis and angiogenesis, leading to abdominal obesity and metabolic syndrome which were inhibited by intra-fat Y2R inactivation. To determine whether stress elevates NPY system and accelerates adipogenic potential of embryo, here we "stressed" murine embryonic stem cells (mESCs) in vitro with epinephrine (EPI) during their adipogenic differentiation. EPI was added during the commitment stage together with insulin, and followed by dexamethasone in the standard adipogenic differentiation medium. Undifferentiated embryonic bodies (EBs) showed no detectable expression of NPY. EPI markedly up-regulated the expression NPY and the Y1R at the commitment stage, followed by increased Y2R mRNA at the late of the commitment stage and the differentiation stage. EPI significantly increased EB cells proliferation and expression of the preadipocyte marker Pref-1 at the commitment stage. EPI also accelerated and amplified adipogenic differentiation detected by increasing the adipocyte markers FABP4 and PPARγ mRNAs and Oil-red O-staining at the end of the differentiation stage. EPI-induced adipogenesis was completely prevented by antagonists of the NPY receptors (Y1R+Y2R+Y5R), indicating that it was mediated by the NPY system in mESC's. Taken together, these data suggest that stress may play an important role in programming ESCs for accelerated adipogenesis by altering the stress induced hormonal regulation of the NPY system.  相似文献   

12.
Neuropeptide Y (NPY)-induced modulation of the immune and inflammatory responses is regulated by tissue-specific expression of different receptor subtypes (Y1–Y6) and the activity of the enzyme dipeptidyl peptidase 4 (DP4, CD26) which terminates the action of NPY on Y1 receptor subtype. The present study investigated the age-dependent effect of NPY on inflammatory paw edema and macrophage nitric oxide production in Dark Agouti rats exhibiting a high-plasma DP4 activity, as acknowledged earlier. The results showed that NPY suppressed paw edema in adult and aged, but not in young rats. Furthermore, plasma DP4 activity decreased, while macrophage DP4 activity, as well as macrophage CD26 expression increased with aging. The use of NPY-related peptides and Y receptor-specific antagonists revealed that anti-inflammatory effect of NPY is mediated via Y1 and Y5 receptors. NPY-induced suppression of paw edema in young rats following inhibition of DP4 additionally emphasized the role for Y1 receptor in the anti-inflammatory action of NPY. In contrast to the in vivo situation, NPY stimulated macrophage nitric oxide production in vitro only in young rats, and this effect was mediated via Y1 and Y2 receptors. It can be concluded that age-dependant modulation of inflammatory reactions by NPY is determined by plasma, but not macrophage DP4 activity at different ages.  相似文献   

13.
14.
Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.  相似文献   

15.
Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.  相似文献   

16.
NPY is present in the retina of different species but its role is not elucidated yet. In this work, using different rat retina in vitro models (whole retina, retinal cells in culture, microglial cell cultures, rat Müller cell line and retina endothelial cell line), we demonstrated that NPY staining is present in the retina in different cell types: neurons, macroglial, microglial and endothelial cells. Retinal cells in culture express NPY Y(1), Y(2), Y(4) and Y(5) receptors. Retina endothelial cells express all NPY receptors except NPY Y(5) receptor. Moreover, NPY is released from retinal cells in culture upon depolarization. In this study we showed for the first time that NPY is present in rat retina microglial cells and also in rat Müller cells. These in vitro models may open new perspectives to study the physiology and the potential pathophysiological role of NPY in the retina.  相似文献   

17.
Many hyothalamic neuropeptides are involved in the regulation of food intake and body weight. The orexins (OX) which are synthesized in the lateral hypothalamus are among the most recently characterized whereas neuropeptide Y (NPY) belongs to a group of "older" peptides extensively studied for their effects on feeding behavior. Both stimulate food ingestion in rodents. In this experiment, we measured the expressions of these peptides as well as of their receptors (OX1-R and OX2-R, Y1 and Y5) in the hypothalamus of obese hyperphagic and lean Zucker rats by real-time RT-PCR using the TaqMan apparatus. NPY mRNA expression in the obese rats was significantly increased by a factor of 10 (P < 0.002) whereas expressions of the Y1 and Y5 receptors were decreased by 25% (P < 0.01) and 50% (P < 0.002), respectively. Their prepro-orexin mRNA expression was more than twofold decreased (P < 0.01) and expressions of their OX receptors 1 and 2 mRNA were five- and fourfold increased (P < 0.05), respectively. An inverse phenomenon was therefore noted between the two peptides: for NPY, increased levels and downregulation of receptors; and for OX, diminished levels with upregulation of receptors. The reasons for these changes might be linked to the absence of leptin signaling as similar profiles are found in the ob/ob mice. For orexins at least, other factors such as hyperglycemia might be involved. Based on anatomical considerations, a direct effect of NPY or of other brain peptides such as CRH cannot be excluded. We conclude that the diminution in the OX tone might participate in a counterregulatory system necessary to limit the noxious effects of NPY on food intake and body weight.  相似文献   

18.
The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.  相似文献   

19.
Gehlert DR  Shaw JL 《Peptides》2007,28(2):241-249
The brain neuropeptide Neuropeptide Y (NPY) is an important modulator of a number of centrally mediated processes including feeding, anxiety-like behaviors, blood pressure and others. NPY produces its effects through at least four functional G-protein coupled receptors termed Y1, Y2, Y4 and Y5. In the brain, the Y1 and Y2 receptor subtypes are the predominant receptor population. To better understand the roles of NPY, genetically modified mice lacking NPY were produced but lacked the expected phenotypes. These mice have previously been reported to have a marked increase in Y2 receptor binding. In the present study, we found an upregulation of both Y1 and Y2 receptor binding and extended these findings to the female. These increases were as large as 10-fold or greater in many brain regions. To assess functional coupling of the receptors, we performed agonist-induced [(35)S]GTPgammaS autoradiography. In the mouse brain, the Y1/Y4/Y5 agonist Leu(31),Pro(34)-NPY increased [(35)S]GTPgammaS binding with a regional distribution consistent with that produced when labeling adjacent sections with [(125)I]-Leu(31),Pro(34)-PYY. In a few brain regions, minor increases were noted in the agonist-induced binding when comparing knock out mice to wild type. The Y2 agonist C2-NPY stimulated [(35)S]GTPgammaS binding in numerous brain areas with a regional distribution similar to the binding observed with [(125)I]-PYY3-36. Again, no major increases were noted in the functional activation of Y2 receptors between knock out and wild type mice. Therefore, the increased Y1 and Y2 binding observed in the NPY knock out mice does not represent an increase in NPY receptor mediated signaling and is likely due to an increase in spare (uncoupled) receptors.  相似文献   

20.
In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号