首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The G-protein-coupled receptors (GPCRs) are one of the largest protein families in human and other animal genomes, but no more than 10 GPCRs have been characterized in fungi. Do fungi contain only this handful or are there more receptors to be discovered? We asked this question using the recently sequenced genome of the fungal plant pathogen Magnaporthe grisea.

Results

Proteins with significant similarity to fungus-specific and other eukaryotic GPCRs were identified in M. grisea. These included homologs of known fungal GPCRs, the cAMP receptors from Dictyostelium, and a steroid receptor mPR. We also identified a novel class of receptors typified by PTH11, a cell-surface integral membrane protein required for pathogenicity. PTH11 has seven transmembrane regions and an amino-terminal extracellular cysteine-rich EGF-like domain (CFEM domain), a characteristic also seen in human GPCRs. Sixty-one PTH11-related proteins were identified in M. grisea that shared a common domain with homologs in Neurospora crassa and other fungi belonging to this subphylum of the Ascomycota (the Pezizomycotina). None was detected in other fungal groups (Basidiomycota or other Ascomycota subphyla, including yeasts) or any other eukaryote. The subclass of PTH11 containing the CFEM domain is highly represented in M. grisea.

Conclusion

In M. grisea we identified homologs of known GPCRs and a novel class of GPCR-like receptors specific to filamentous ascomycetes. A member of this new class, PTH11, is required for pathogenesis, thus suggesting roles in pathogenicity for other members. The identified classes constitute the largest number of GPCR-like proteins reported in fungi to date.
  相似文献   

2.

Background

Bacterial genomes develop new mechanisms to tide them over the imposing conditions they encounter during the course of their evolution. Acquisition of new genes by lateral gene transfer may be one of the dominant ways of adaptation in bacterial genome evolution. Lateral gene transfer provides the bacterial genome with a new set of genes that help it to explore and adapt to new ecological niches.

Methods

A maximum likelihood analysis was done on the five sequenced corynebacterial genomes to model the rates of gene insertions/deletions at various depths of the phylogeny.

Results

The study shows that most of the laterally acquired genes are transient and the inferred rates of gene movement are higher on the external branches of the phylogeny and decrease as the phylogenetic depth increases. The newly acquired genes are under relaxed selection and evolve faster than their older counterparts. Analysis of some of the functionally characterised LGTs in each species has indicated that they may have a possible adaptive role.

Conclusion

The five Corynebacterial genomes sequenced to date have evolved by acquiring between 8 – 14% of their genomes by LGT and some of these genes may have a role in adaptation.
  相似文献   

3.

Background

The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions.

Results

We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses.

Conclusions

We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.
  相似文献   

4.

Background

Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison.

Results

This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection.

Conclusions

Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata.
  相似文献   

5.
6.

Background

The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus.

Results

Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV), whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene.

Conclusion

We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.
  相似文献   

7.

Background

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western population. Although genetic factors are considered to contribute to CLL etiology, at present genomic aberrations identified in CLL are limited compared with those identified in other types of leukemia, which raises the question of the degree of genetic influence on CLL. We performed a high-resolution genome scanning study to address this issue.

Findings

Using the restriction paired-end-based Ditag Genome Scanning technique, we analyzed three primary CLL samples at a kilobase resolution, and further validated the results in eight primary CLL samples including the two used for ditag collection. From 51,632 paired-end tags commonly detected in the three CLL samples representing 5% of the HindIII restriction fragments in the genomes, we identified 230 paired-end tags that were present in all three CLL genomes but not in multiple normal human genome reference sequences. Mapping the full-length sequences of the fragments detected by these unmapped tags in seven additional CLL samples confirmed that these are the genomic aberrations caused by small insertions and deletions, and base changes spreading across coding and non-coding regions.

Conclusions

Our study identified hundreds of loci with insertion, deletion, base change, and restriction site polymorphism present in both coding and non-coding regions in CLL genomes, indicating the wide presence of small genomic aberrations in chronic lymphocytic leukemia. Our study supports the use of a whole genome sequencing approach for comprehensively decoding the CLL genome for better understanding of the genetic defects in CLL.
  相似文献   

8.

Background

The pufferfish Fugu rubripes (Fugu) with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified.

Results

We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6) in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci.

Conclusion

This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.
  相似文献   

9.
Alexeev  Nikita  Alekseyev  Max A. 《BMC genomics》2017,18(4):356-9

Background

The ability to estimate the evolutionary distance between extant genomes plays a crucial role in many phylogenomic studies. Often such estimation is based on the parsimony assumption, implying that the distance between two genomes can be estimated as the rearrangement distance equal the minimal number of genome rearrangements required to transform one genome into the other. However, in reality the parsimony assumption may not always hold, emphasizing the need for estimation that does not rely on the rearrangement distance. The distance that accounts for the actual (rather than minimal) number of rearrangements between two genomes is often referred to as the true evolutionary distance. While there exists a method for the true evolutionary distance estimation, it however assumes that genomes can be broken by rearrangements equally likely at any position in the course of evolution. This assumption, known as the random breakage model, has recently been refuted in favor of the more rigorous fragile breakage model postulating that only certain “fragile” genomic regions are prone to rearrangements.

Results

We propose a new method for estimating the true evolutionary distance between two genomes under the fragile breakage model. We evaluate the proposed method on simulated genomes, which show its high accuracy. We further apply the proposed method for estimation of evolutionary distances within a set of five yeast genomes and a set of two fish genomes.

Conclusions

The true evolutionary distances between the five yeast genomes estimated with the proposed method reveals that some pairs of yeast genomes violate the parsimony assumption. The proposed method further demonstrates that the rearrangement distance between the two fish genomes underestimates their evolutionary distance by about 20%. These results demonstrate how drastically the two distances can differ and justify the use of true evolutionary distance in phylogenomic studies.
  相似文献   

10.

Background

Hevea brasiliensis is an important commercial crop due to the high quality of the latex it produces; however, little is known about viral infections in this plant. The only virus described to infect H. brasiliensis until now is a Carlavirus, which was described more than 30?years ago. Virus-derived small interfering RNA (vsiRNAs) are the product of the plant’s antiviral defense triggered by dsRNA viral intermediates generated, during the replication cycle. These vsiRNAs are complementar to viral genomes and have been widely used to identify and characterize viruses in plants.

Methods

In the present study, we investigated the virome of leaf and sapwood samples from native H. brasiliensis trees collected in two geographic areas in the Brazilian Amazon. Small RNA (sRNA) deep sequencing and bioinformatic tools were used to assembly, identify and characterize viral contigs. Subsequently, PCR amplification techniques were performed to experimentally verify the presence of the viral sequences. Finally, the phylogenetic relationship of the putative new virus with related viral genomes was analyzed.

Results

Our strategy allowed the identification of 32 contigs with high similarity to viral reference genomes, from which 23 exhibited homology to viruses of the Tymoviridae family. The reads showed a predominant size distribution at 21?nt derived from both strands, which was consistent with the vsiRNAs profile. The presence and genome position of the viral contigs were experimentally confirmed using droplet digital PCR amplifications. A 1913 aa long fragment was obtained and used to infer the phylogenetic relationship of the putative new virus, which indicated that it is taxonomically related to the Grapevine fleck virus, genus Maculavirus. The putative new virus was named Hevea brasiliensis virus (HBrV) in reference to its host.

Conclusion

The methodological strategy applied here proved to be efficient in detecting and confirming the presence of new viral sequences on a ‘very difficult to manage’ sample. This is the second time that viral sequences, that could be ascribed as a putative novel virus, associated to the rubber tree has been identified.
  相似文献   

11.

Background

With the advances in the next-generation sequencing technologies, researchers can now rapidly examine the composition of samples from humans and their surroundings. To enhance the accuracy of taxonomy assignments in metagenomic samples, we developed a method that allows multiple mismatch probabilities from different genomes.

Results

We extended the algorithm of taxonomic assignment of metagenomic sequence reads (TAMER) by developing an improved method that can set a different mismatch probability for each genome rather than imposing a single parameter for all genomes, thereby obtaining a greater degree of accuracy. This method, which we call TADIP (Taxonomic Assignment of metagenomics based on DIfferent Probabilities), was comprehensively tested in simulated and real datasets. The results support that TADIP improved the performance of TAMER especially in large sample size datasets with high complexity.

Conclusions

TADIP was developed as a statistical model to improve the estimate accuracy of taxonomy assignments. Based on its varying mismatch probability setting and correlated variance matrix setting, its performance was enhanced for high complexity samples when compared with TAMER.
  相似文献   

12.

Objectives

Identification of novel microbial factors contributing to plant protection against abiotic stress.

Results

The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.

Conclusion

Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.
  相似文献   

13.

Background

Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions.

Results

We present a computational method, ADseq, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADseq provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADseq to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes.

Conclusions

We demonstrate the method’s ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.
  相似文献   

14.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

15.

Background

Hot spring bacteria have unique biological adaptations to survive the extreme conditions of these environments; these bacteria produce thermostable enzymes that can be used in biotechnological and industrial applications. However, sequencing these bacteria is complex, since it is not possible to culture them. As an alternative, genome shotgun sequencing of whole microbial communities can be used. The problem is that the classification of sequences within a metagenomic dataset is very challenging particularly when they include unknown microorganisms since they lack genomic reference. We failed to recover a bacterium genome from a hot spring metagenome using the available software tools, so we develop a new tool that allowed us to recover most of this genome.

Results

We present a proteobacteria draft genome reconstructed from a Colombian’s Andes hot spring metagenome. The genome seems to be from a new lineage within the family Rhodanobacteraceae of the class Gammaproteobacteria, closely related to the genus Dokdonella. We were able to generate this genome thanks to CLAME. CLAME, from Spanish “CLAsificador MEtagenomico”, is a tool to group reads in bins. We show that most reads from each bin belong to a single chromosome. CLAME is very effective recovering most of the reads belonging to the predominant species within a metagenome.

Conclusions

We developed a tool that can be used to extract genomes (or parts of them) from a complex metagenome.
  相似文献   

16.

Background

Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment.

Results

The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro.

Conclusions

Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage.
  相似文献   

17.

Background

The gene family-free framework for comparative genomics aims at providing methods for gene order analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We study two problems related to the breakpoint median of three genomes, which asks for the construction of a fourth genome that minimizes the sum of breakpoint distances to the input genomes.

Methods

We present a model for constructing a median of three genomes in this family-free setting, based on maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity in the score of a gene adjacency. We study its computational complexity and we describe an integer linear program (ILP) for its exact solution. We further discuss a related problem called family-free adjacencies for k genomes for the special case of \(k \le 3\) and present an ILP for its solution. However, for this problem, the computation of exact solutions remains intractable for sufficiently large instances. We then proceed to describe a heuristic method, FFAdj-AM, which performs well in practice.

Results

The developed methods compute accurate positional orthologs for genomes comparable in size of bacterial genomes on simulated data and genomic data acquired from the OMA orthology database. In particular, FFAdj-AM performs equally or better when compared to the well-established gene family prediction tool MultiMSOAR.

Conclusions

We study the computational complexity of a new family-free model and present algorithms for its solution. With FFAdj-AM, we propose an appealing alternative to established tools for identifying higher confidence positional orthologs.
  相似文献   

18.

Background

Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.

Objective

Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.

Results and Conclusion

In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.
  相似文献   

19.
20.

Background

G protein-coupled receptors (GPCRs) represent a physiologically and pharmacologically important family of receptors that upon coupling to GαS stimulate cAMP production catalyzed by adenylyl cyclase. Thus, developing assays to monitor cAMP production is crucial to screen for ligands in studies of GPCR signaling. Primary cell cultures represent a more robust model than cell lines to study GPCR signaling since they physiologically resemble the parent tissue. Current cAMP assays have two fundamental limitations: 1) absence of cAMP kinetics as competition-based assays require cell lysis and measure only a single time-point, and 2) high variation with separate samples needed to measure consecutive time points. The utility of real-time cAMP biosensors is also limited in primary cell cultures due to their poor transfection efficiency, variable expression levels and inability to select stable clones. We therefore, decided to develop an assay that can measure cAMP not only at a single time-point but the entire cAMP kinetics after GPCR activation in untransfected primary cells.

Results

CANDLES (C yclic A MP iN direct D etection by L ight E mission from S ensor cells) assay for monitoring cAMP kinetics in cell cultures, particularly in primary cultures was developed. The assay requires co-culturing of primary cells with sensor cells that stably express a luminescent cAMP sensor. Upon GPCR activation in primary cells, cAMP is transferred to sensor cells via gap junction channels, thereby evoking a luminescent read-out. GPCR activation using primary cultures of rat cortical neurons and mouse granulosa cells was measured. Kinetic responses of different agonists to adrenergic receptors were also compared using rat cortical neurons. The assay optimization was done by varying sensor-test cell ratio, using phosphodiesterase inhibitors and testing cell-cell contact requirement.

Conclusions

Here we present CANDLES assay based on co-culturing test cells with cAMP-detecting sensor cells. This co-culture setup allows kinetic measurements, eliminates primary cell transfections and reduces variability. A variety of cell types (rat cortical neurons, mouse granulosa cells and established cell lines) and receptors (adrenergic, follicle stimulating hormone and luteinizing hormone/chorionic gonadotropin receptors) were tested for use with CANDLES. The assay is best applied while comparing cAMP generation curves upon different drug treatments to untransfected primary cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号