首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Demonstration of histamine H2 receptors on human melanoma cells   总被引:1,自引:0,他引:1  
Histamine induced a concentration-dependent increase in intracellular cyclic-AMP of the two human melanoma cell lines SK23 and DX3.LT5.1; maximal stimulation was obtained with 17.8 microM histamine which consistently produced greater than 50-fold increases in the cyclic AMP content of both cell lines. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of the histamine H2 receptor antagonist cimetidine. Ranitidine, another H2 receptor antagonist also prevented the histamine-induced cyclic AMP elevation, but the H1 receptor antagonists mepyramine and tripelennamine had no significant effect. These findings indicate that human melanoma cells express histamine H2 receptors, stimulation of which activates adenylate cyclase with a subsequent rise in intracellular cyclic AMP. Mast cell:melanoma interactions mediated by histamine in vivo might therefore be expected to modify some aspects of melanoma cell behaviour.  相似文献   

2.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

3.
The choroid plexus is a major site of CSF production. When primary cultures of bovine choroid plexus epithelial cells were exposed to 1 micrograms/ml cholera toxin, a 50-fold increase of intracellular cyclic AMP was found 1 h later. Exposure of cells to 10(-5) M isoproterenol, 10(-4) M prostaglandin E1, 10(-5) M histamine, and 10(-5) M serotonin caused increases of intracellular cyclic concentrations of 100-, 50-, 20-, and 4-fold, respectively. From 5 to 15 min were required for these maximal responses to occur. Many other molecules including prolactin, vasopressin, and corticotropin did not alter cellular cyclic AMP levels. The accumulation of cyclic AMP could be inhibited by specific antagonists: propranolol inhibited the isoproterenol-mediated stimulation while diphenhydramine and metiamide inhibited the histamine response. In addition, diphenhydramine inhibited serotonin-dependent cyclic AMP accumulation. Combinations of isoproterenol, prostaglandin E1, histamine, and serotonin elicited additive responses as measured by cyclic AMP accumulation with one exception, i.e., serotonin inhibited the histamine response. Our findings suggest that distinct receptor sites on choroid plexus epithelia exist for isoproterenol, prostaglandin E1, and histamine. Efflux of cyclic AMP into the extracellular medium was found to be a function of the intracellular cyclic AMP levels over a wide range of concentrations. Our studies provide direct evidence for hormonal regulation of cyclic AMP metabolism in epithelial cells of the choroid plexus.  相似文献   

4.
Histamine dose-dependently stimulated cyclic AMP production in human gastric carcinoma cell line MKN-45, and this effect was inhibited by cimetidine but not by pyrilamine. Moreover, not only histamine but also cimetidine displaced the specific binding of [3H]tiotidine to these cells, whereas pyrilamine had no effect. On the other hand, pretreatment of MKN-45 cells with retinoic acid (RA) significantly enhanced histamine-induced increase of cyclic AMP production, although the cyclic AMP response to either forskolin or NaF was not affected. Finally, RA treatment increased the number of histamine receptor without altering its affinity. Thus, it appears that histamine H2-receptors are present on MKN-45 cells, and that RA treatment enhances the action of histamine on these cells by increasing the number of H2-receptors.  相似文献   

5.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Drosophila Schneider 2 (S2) cells are often employed as host cells for non-lytic, stable expression and functional characterization of mammalian and insect G-protein-coupled receptors (GPCRs), such as biogenic amine receptors. In order to avoid cross-reactions, it is extremely important to know which endogenous receptors are already present in the non-transfected S2 cells. Therefore, we analyzed cellular levels of cyclic AMP and Ca2+, important second messengers for intracellular signal transduction via GPCRs, in response to a variety of naturally occurring biogenic amines, such as octopamine, tyramine, serotonin, histamine, dopamine and melatonin. None of these amines (up to 0.1 mM) was able to reduce forskolin-stimulated cyclic AMP production in S2 cells. Furthermore, no agonist-induced calcium responses were observed. Nevertheless, the phenolamines octopamine (OA) and tyramine (TA) induced a dose-dependent increase of cyclic adenosine monophosphate (AMP) production in S2 cells, while serotonin, histamine, dopamine and melatonin (up to 0.1 mM) did not. The pharmacology of this response was similar to that of the octopamine-2 (OA2) receptor type. In addition, this paper provides evidence for the presence of an endogenous mRNA encoding an octopamine receptor type in these cells, which is identical or very similar to OAMB. This receptor was previously shown to be positively coupled to adenylyl cyclase.  相似文献   

7.
H2 Histamine Receptors on the Epithelial Cells of Choroid Plexus   总被引:2,自引:2,他引:0  
A major site of cerebrospinal fluid production in vertebrates is the choroid plexus. The epithelial cells of the choroid plexus accumulate intracellular cyclic AMP in response to several effectors, including histamine. Since histamine is known to regulate fluid secretion in the stomach via H2 histamine receptors, we asked whether H2 receptors might also be present on epithelial cells of bovine choroid plexus. Using agonists and antagonists of histamine, we show that an agonist and antagonist pair specific for the H2 subtype were clearly more effective than an H1 agonist and antagonist pair in mimicking or inhibiting histamine stimulation of cellular cyclic AMP. Analysis by Schild plot allowed assignment of an apparent dissociation constant to the H2 antagonist metiamide which was 34-fold lower than that of its H1 counterpart, diphenhydramine. These results indicate that epithelial cells of the choroid plexus possess H2 histamine receptors.  相似文献   

8.
The role of cyclic nucleotides in regulating acid secretion by dispersed mucosal cells from guinea-pig stomach was examined by measuring first the ability of histamine and carbachol to stimulate [dimethylamine-14C]aminopyrine uptake and cyclic nucleotide metabolism and secondly, the effect of exogenous cyclic nucleotides on basal and stimulated [14C]aminopyrine uptake. The [14C]aminopyrine was found in an acidic, osmotically sensitive compartment, probably associated with the initial steps in acid secretion by these cells. Although histamine increased [14C]aminopyrine uptake and cyclic AMP synthesis as expected, histamine was approx. 10-fold more potent in inducing [14C]aminopyrine uptake. This dissociation of [14C]aminopyrine uptake and cyclic AMP metabolism process was further manifested by the observation that prostaglandin E1 failed to increase [14C]aminopyrine uptake, although it did cause a rise in cellular cyclic AMP. Furthermore, prostaglandin E1 did not alter the [14C]-aminopyrine uptake caused by histamine. Carbachol was found to increase the [14C]aminopyrine uptake and also to potentiate the ability of histamine to increase [14C]aminopyrine uptake. Carbachol, however, affected neither the histamine-induced increase in cyclic AMP nor the binding of [3H]histamine to the cells. Cimetidine, a histamine H2 receptor antagonist, blocked the [14C]aminopyrine uptake induced either by histamine alone or by the potentiating combination of histamine plus carbachol. These results suggest that cyclic AMP is mediating the action of histamine on [14C]aminopyrine uptake but changes in cyclic AMP per se are not necessarily the cause for the potentiated increase in [14C]aminopyrine uptake. Furthermore, the potentiated response observed with histamine plus carbachol on [14C]aminopyrine uptake occurs at a biochemical step distal to and not obviously related to cyclic AMP generation.  相似文献   

9.
In dispersed mucosal cells from guinea pig stomach cyclic AMP was increased 4-fold by theophylline, 5-fold by prostaglandin E2, and 10- to 15-fold by histamine. Theophylline augmented the increase in cellular cyclic AMP caused by histamine or prostaglandin E1 and the actions of histamine and prostaglandin E1 were additive. Cellular cyclic AMP was not altered by carbachol, gastrin, secretin, vasoactive intestinal peptide, glucagon, insulin or the octapeptide of cholecystokinin. Metiamide or diphenhydramine but not atropine inhibited the increase in cellular cyclic AMP caused by histamine, but did not alter the concentration of cyclic AMP in control cells or in cells incubated with theophylline or prostaglandin E1.  相似文献   

10.
There appear to be considerable differences among tissues in the inhibitory action of adenosine 3′,5′-monophosphate (cyclic AMP) on phosphatidylinositol (PI) turnover induced by various extracellular signals. The present studies were on human peripheral lymphocytes and rat hepatocytes. In the lymphocyte system, cells are activated by phytohemagglutinin that induces PI turnover, and this PI turnover and cellular activation are profoundly blocked by dibutyryl cyclic AMP as well as by prostaglandin E1 which markedly increases cyclic AMP. In contrast, in the hepatocyte system, glycogenolysis is enhanced by α-agonists that induce PI turnover as well as by β-agonists and glucagon that increase cyclic AMP. In these cells the two classes of receptors appear to function independently, and PI turnover is not inhibited by cyclic AMP.  相似文献   

11.
The role of cyclic AMP in the secretory mechanism of mast cells has been investigated by comparing the time course of changes in cellular levels of this cyclic nucleotide with the kinetics of secretion induced by basic peptides, antigen, anti-IgE and calcium ionophore. ACTH(1–24) peptide and a synthetic decapeptide representative of the sequence 497–506 within the Cε4 domain of human IgE induced a transient rise in cyclic AMP which reached approx. 150% of the resting levels by 10 s. Peptide-induced secretion of histamine was also rapid, reaching a maximum after 5–10 s. Immunological triggering of mast cells with antigen and anti-IgE raised levels of cyclic AMP to 150% of resting levels within 15 s, accompanying secretion of histamine which reached a maximum after 30 s. A relatively slower release of histamine induced by the calcium ionophore A23187 was paralleled by a significant reduction in cyclic AMP to 50% of the resting levels after 300 s. These data suggest a relationship between the accumulation of cyclic AMP in mast cells and secretion of histamine mediated by the Cε4 decapeptide and the ACTH(1–24) peptide as well as by IgE-dependent mechanisms. However, the simultaneous increase in cyclic AMP and secretion of histamine suggests that the two events may not be causally related.  相似文献   

12.
Several benzodiazepines, diazepam, chlordiazepoxide, desmethyldiazepam, methyloxazepam and oxazepam, potentiate the accumulation of cyclic AMP elicited by histamine and histamine: noradrenaline in cerebral cortical slices of guinea pig. In addition, these drugs increase basal levels of cyclic AMP by about 100 per cent. When adenosine is used to stimulate cyclic AMP formation only diazepam, desmethyldiazepam and methyloxazepam are increasing cyclic AMP levels significantly over respective controls. The order of potency is: diazepam > desmethyldiazepam > methyloxazepam > oxazepam > chlordiazepoxide. Diazepam decreases the rate of degradation of cyclic AMP after removal of the stimulatory agents (histamine : noradrenaline). Dose response curves for diazepam under two stimulatory conditions are shown. A significant effect is obtained at 50 μm -diazepam and an ED50 of 40 μm is calculated with histamine as the stimulatory agent. When cyclic AMP formation is elicited by histamine : noradrenaline a significant effect of diazepam is seen at 10 μm and an ED50 of 16 μm is obtained. These results lend support to the hypothesis that the psychotropic action of the benzodiazepines may, at least in part, involve the cyclic AMP generating systems of the central nervous system.  相似文献   

13.
We previously reported that endogenous nitric oxide (NO) is involved in the peripheral control of gastric acid secretion induced by some secretagogues, and that endogenous NO is involved in the acid secretion process via histamine release from histamine-containing cells. However, the stimulus-secretion coupling in the cells remains to be clarified. In the present study, we investigated the effect of dibutyryl cyclic GMP on gastric acid secretion in mouse isolated stomach and on histamine release in gastric mucosal cells, in comparison with those of dibutyryl cyclic AMP. Dibutyryl cyclic GMP (300 microM) produced a slight but significant increase of gastric acid secretion, which was completely inhibited by the histamine-H2 receptor antagonist famotidine. In contrast, dibutyryl cyclic GMP (1 mM) markedly inhibited histamine-induced acid secretion. Dibutyryl cyclic AMP (100 microM) produced a sustained increase of gastric acid secretion. The pretreatment with famotidine partially inhibited dibutyryl cyclic AMP-induced gastric acid secretion. Dibutyryl cyclic GMP and dibutyryl cyclic AMP significantly increased the histamine release from gastric mucosal cells. These results suggest that both intracellular cyclic GMP and cyclic AMP act as second messengers for histamine release in the histamine-containing cells, probably ECL cells. On the other hand, in gastric parietal cells, cyclic AMP has a stimulatory effect on gastric acid secretion, whereas cyclic GMP has an inhibitory effect.  相似文献   

14.
The treatment of mycelial cells with membrane-active antibiotics, uncouplers of oxidative phosphorylation and KCl leads to a transient increase in adenosine 3',-5'-monophosphate (cyclic AMP) levels in Coprinus macrorhizus. The maximal values and duration of increase in the cyclic AMP level depended on the kind and amount of these drugs. The treatment with these drugs simultaneously resulted in a rapid increase in the phosphorylation of three cellular proteins. The levels and time course of phosphorylation of these proteins were paralleled with the increase of cyclic AMP level in response to the drugs used. Thus, the treatment of these drugs causes the transient increase of cyclic AMP level and cyclic AMP stimulates the phosphorylation of particular proteins by activating protein kinases.  相似文献   

15.
In isolated guinea pig gastric mucous and enriched parietal cells it was tested whether or not cyclic AMP in response to histamine stimulation might reach concentrations sufficiently high to activate an intracellular cyclic AMP-dependent protein kinase and thereby mediate the acid response. Although histamine stimulated parietal cell adenylate cyclase to a greater extent than mucous cell adenylate cyclase, cyclic AMP levels in response to maximal histamine stimulation reached higher levels in mucous than in parietal cells. This had to be attributed to a five times higher phosphodiesterase activity in parietal cell than in mucous cell populations. In the absence of the phosphodiesterase inhibitor isobutylmethylxanthine exposure of the cells to histamine only in mucous cells produced an increase in cyclic AMP-dependent protein kinase activity ratio, but not in parietal cells. Dibutyryl-cyclic AMP induced cyclic AMP accumulation in parietal cell populations was compared to dibutyryl-cyclic AMP induced H+ secretion, as measured by 14C-aminopyrine uptake. A maximal acid response was associated with an intracellular cyclic AMP level of approximately 300 pmol/10(6) cells, which was never reached by maximal histamine stimulation even not in the presence of the phosphodiesterase inhibitor. It is concluded that activation of the parietal cell cyclic AMP-dependent protein kinase is one way for stimulating H+ secretion, but that the acid response elicited by histamine requires another intracellular pathway.  相似文献   

16.
In dispersed mucosal cells prepared from rabbit and guinea pig stomach, the secretion of intrinsic factor was constant (0.3–0.4%/min) for at least 30 min incubation at 37°C. Histamine or isobutyl methylxanthine increased cyclic AMP and intrinsic factor secretion in both cell preparations. Isobutyl methylxanthine potentiated and cimetidine competitively inhibited (Ki=5·10?7 M) both effects of histamine. Dibutyryl cyclic AMP (1.0 mM), also caused a 3-fold increase in intrinsic factor secretion. These results suggest that in rabbit and guinea pig histamine interacts with H2-receptors to increase cyclic AMP which mediates the rise in the rate of intrinsic factor secretion.  相似文献   

17.
The mechasism of human basophil histamine release by the calcium ionophore A23187 has been compared to that induced by the interaction of antigen with cell bound IgE antibody. Ionophore induced histamine release (Ion. H.R.) occurs with the leukocytes of both normal and allergic donors. It is completely calcium dependent; LaCl3 inhibits both Ion. H.R. and antigen induced histamine release (Ag. H.R.) at about 10-minus 7 M. The kinetics of Ion. H.R. suggest that this process has no "desensitization" phase as does Ag. H.R. and the ionophore is fully active on antigen-desensitized cells. Pharmacologic studies indicate that dibutyryl cyclic AMP and agents which increase endogenous cyclic AMP levels do not inhibit Ion. H.R. as they inhibit the early stages of Ag. H.R. Of the agents which affect microtubules, colchicine inhibits and D2O enhances Ion. H.R. in a manner which is qualitatively similar but quantitatively less marked than their effects on Ag. H.R. The metabolic antagonist 2-deoxyglucose inhibits both Ion. H.R. and Ag. H.R. in a similar fashion. Based on these data and the observation that cells pretreated with ionophore show a marked (synergistic) enhancement of Ag. H.R. we conclude that Ion. H.R. has a similar or identical mechanism to the later stages if Ag. H.R. but "short circuits" the cyclic AMP-associated events of Ag. H.R.  相似文献   

18.
Loss of gonadotropin receptors in murine Leydig tumor cells and of beta-adrenergic receptors in rat glioma C6 cells occurred following exposure of the cells to human chorionic gonadotropin and isoproterenol, respectively. Down-regulation of receptors was mimicked in part by other agents that elevated cyclic AMP levels in the cells such as cholera toxin and dibutyryl cyclic AMP. Whereas agonist-mediated receptor loss was rapid and almost total, down-regulation by cyclic AMP was slower and less extensive. Down-regulation of receptors did not appear to be accompanied by loss of the regulatory and catalytic components of adenylate cyclase. Hormone-mediated down-regulation was preceded by desensitization of hormone-stimulated adenylate cyclase. In contrast, there was no evidence that cyclic AMP caused desensitization. Finally, loss of receptors induced either by agonists or cyclic AMP required protein synthesis as cycloheximide inhibited down-regulation. We conclude that down-regulation of receptors in these cells is a complex process involving both cyclic AMP-independent and -dependent events.  相似文献   

19.
Histamine and the heart   总被引:1,自引:0,他引:1  
Histamine has been known as a cardiac stimulant for over 70 years. Work in our laboratory over the past decade has established that histamine receptors exist in the hearts of various species. The type of histamine receptor varies not only between species but also in the various regions of the heart. In the guinea pig heart H1 receptors are found in left atria and ventricles while H2 receptors are found in right atria and are the predominant histamine receptor in the ventricles. Rabbit atria contain both H1 and H2 receptors while the ventricles appear to possess only H1. Rat and cat heart do not seem to have histamine receptors and the positive inotropic and chronotropic effects elicited by histamine in cardiac preparations of these species are due to the release of noradrenaline. Dog heart contains H1 receptors while human heart has H2 receptors. In all cases H2 receptors are associated with adenylate cyclase and stimulation of such receptors results in an increase in cyclic AMP levels. H1 receptors are not associated with cyclic nucleotides in the heart. There are certain similarities between beta-adrenergic and H2-histaminergic receptors as well as between alpha-adrenergic and H1-histaminergic receptors. Stimulation of either histamine receptor must result in an increase in the free calcium ion concentration in the cardiac cell but the mechanisms involved are obviously different.  相似文献   

20.
The effects of various concentrations of biogenic amines on the formation of adenosine-3', 5'-monophosphate (cyclic AMP) and their interactions with other thyroid stimulators were investigated in human thyroid slices from normal and Graves' disease. Most of biogenic amines were found to have the stimulatory effects to some extent. Among the biogenic amines tested, histamine was the most potent thyroid stimulator, norepinephrine and serotonin, the intermediate in terms of cyclic AMP formation. The effect of histamine was almost as potent as TSH in thyroid slices from Graves' disease. This stimulatory effect of histamine was blocked by metiamide, a histamine H2-receptor antagonist, but not by chlorpheniramine, a histamine H1-receptor antagonist. The effect of norepinephrine was completely inhibited by propranolol, but not by phentolamine. Polyphloretin phosphate did not inhibit norepinephrine- or histamine-induced cyclic AMP formation, while it significantly depressed cyclic AMP formation induced by prostaglandin E2. The maximal effect of histamine was additive to that of TSH. It is suggested that biogenic amines, histamine and norepinephrine, in particular, have the thyroid receptors different from that of TSH or prostaglandin E2 and could play an important role in thyroid physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号