首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of a Bacillus cereus enterotoxin, measured as rabbit skin permeability factor (PF), in response to differences in glucose availability, pH, and dissolved oxygen tension was studied in a 1-liter batch fermentor system. Glucose had to be present for toxigenesis to occur. In uncontrolled fermentation an increasing inhibition of PF production and growth occurred as pH dropped occurred below 6.5. Optimum pH for toxigenesis was 7.0 to 7.5, and fermentations maintained at this level yielded 10- to 20-fold more PF than comparable uncontrolled fermentations. PF production was appreciably diminished at or below pH 6.0 and at or above pH 8.5. Peak PF titer was associated with a drop in acid output, and the titrant utilization profile could be used as an indication of this point. Productivity was greatest in the early exponential phase of growth and decreased to zero at the transition phase. Differences in dissolved oxygen tension affected both the maximum productivity early in the fermentation and the rate of its decrease as growth progressed. The optimum dissolved oxygen tension for toxigenesis was 0.002 atm, and the most rapid growth occurred at 0.10 atm. Productivity and growth were reduced under anerobic conditions, whereas a hyperoxic environment severely reduced productivity, but not growth. Postexponential-phase loss of toxic activity coincided with a rapid increase in cellular oxygen demand. Neither was inhibited by the presence of glucose. However, PF loss was completely prevented by stringent oxygen limitation. Extracellular proteolytic activity did not appear to be responsible for the loss of toxic activity.  相似文献   

2.
Gluconobacter melanogenus 3293 converts glycerol to dihydroxyacetone(DHA) during exponential growth on a yeast extract-phosphate medium at pH 7. The efficiency of this conversion in 25-liter batch fermentations has been found to increase over threefold, when oxygen tension is controlled by increasing the partial pressure of oxygen in the aeration. Conversion of glycerol to DHA does not occur under oxygen-limited fermentation conditions. When the dissolved oxygen tension was maintained at 0.05 atmospheres (using oxygen-enriched air), quantitative conversion of up to 100 g of glycerol/liter to DHA was obtained in 33 h. The amount of glycerol converted can be increased without increasing impeller speed or aeration rate. This increase is not the result of increased production of cell mass. The specific conversion of glycerol to DHA increased from 12.2 g of DHA/g of cell mass at the point of maximum conversion to 35.8 with oxygen enrichment. This increased specific production occurred even though the specific growth rate during the period of oxygen enrichment decreased from 0.23 to 0.06/h.  相似文献   

3.
Experiments carried out with the dissolved oxygen tension (DOT) maintained during fermentation at 0, 10, 50, 70 and 100% showed a direct effect of the dissolved oxygen levels on weissellin A production with no correlative increase on biomass. An estimate of the yield of weissellin A per gram biomass revealed the 50% DOT level as the optimum for increased yields. The effect of pH was studied in experiments carried out without pH control, with pH initially set at 6.0, 5.0 and 4.5 and with pH controlled at 6.0, 5.0 and 4.5. The initial pH value and the pH-drop gradient appear to be the important parameters for weissellin A production. Production was significantly higher with the uncontrolled initial pH compared to that of the controlled initial pH at 6.0, while acidic initial pHs created unfavorable conditions for production. Maintaining a constant pH environment during fermentation led to decreased production levels.  相似文献   

4.
Summary An open-loop, on-off control system using the dissolved oxygen level to control a glucose feed was used in a study of growth and production of protease by Bacillus subtilis CNIB 8054. With this system, both glucose and oxygen were controlled at low concentrations. In batch fermentations, protease activity in the fermentation broth was maximum when growth had stopped. During oxygen-controlled, glucose fed-batch fermentations, growth and the production of protease activity continued during glucose feeding. Oxygen-controlled, glucose fed-batch fermentations produced more protease activity than batch fermentations, depending upon the set point for dissolved oxygen. These results indicate that control of glucose and oxygen concentrations can result in improvements in protease production.  相似文献   

5.
In order to evaluate the independent effects of hydrodynamic conditions and/or oxygen tension on culture physiology and productivity, a fermentation system designed to control dissolved oxygen at constant power drawn (P/V) was developed. The system included a fully instrumented 14 l bioreactor coupled to a PC for data acquisition and control. Power drawn was measured (using a commercial torquemeter coupled to the shaft) and maintained constant by varying the agitation speed; while gas blending was used to control dissolved oxygen concentration. To validate the system, rheological-complex fermentations involving xanthan gum production and filamentous fungal cultivation (using Xanthomonas campestris and Trichoderma harzianum) were developed. In both cases, and despite the changing environmental conditions (due to increased broth viscosities and microbial respiration), both variables were controlled at the desired set points. Through such a system, a rigorous evaluation of the hydrodynamic conditions and/or oxygen tension on culture physiology and productivity is now feasible.  相似文献   

6.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

7.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

8.
The cultivation of strains of the genus Streptosporangium in batch fermentations demonstrated that the optimal conditions for secondary metabolite production are completely different to those of the closely related genus Streptomyces. The dissolved oxygen tension (pO(2)) was identified as an important parameter for optimal production of secondary metabolites in submerged cultures. Extreme variations of this parameter by changes in aeration (gas flow), agitation system and stirrer speed showed a tremendous impact in production yields of all investigated strains. Finally, a 20-fold increase in productivity was observed by conditions of controlled oxygen excess compared to optimal fermentation conditions for Streptomyces strains.  相似文献   

9.
Agitation and pressure effects on acetone-butanol fermentation   总被引:1,自引:0,他引:1  
Batch fermentations were run at varying agitation rates and were either pressurized to 1 bar (15.2 psig) or nonpressurized. Agitation and pressure both affect the level of dissolved hydrogen gas in the media, which in turn influences solvent production. In nonpressurized fermentations volumetric productivity of butanol increased as the agitation rate decreased. While agitation had no significant effect on butanol productivity under pressurized conditions, overall butanol productivity was increased over that obtained in the nonpressurized runs. Maximum butyric acid productivity, however, was found to occur earlier and increased as agitation increased. Peak hydrogen productivity occurred simultaneously with peak butyric acid productivity. The proporation of reducing equivalents used in forming the above products was determined using a redox balance based on the fermentation stoichiometry. An inverse relationship between the final concentrations of acetone and acetoin was found in all fermentations studied. The results show that agitation and pressure are important parameters for solvent productivity in acetone-butanol fermentation.  相似文献   

10.
Summary Fed-batch xylose fermentations with the yeastsCandida shehatae andPichia stipitis were conducted, using stirrer speed variation with the redox potential as control index to maintain oxygen-limited conditions. The best results were obtained withC. shehatae at 300 (±10) m V (relative to the standard hydrogen electrode), and these fermentation parameters compared favourably with those obtained previously with the dissolved oxygen tension as control variable. Redox control ofP. stipitis fermentations proved especially difficult. Cell growth during the fermentation was probably a major factor affecting redox potential.  相似文献   

11.
The purpose of this article is to demonstrate how a model can be constructed such that the progress of a submerged fed-batch fermentation of a filamentous fungus can be predicted with acceptable accuracy. The studied process was enzyme production with Aspergillus oryzae in 550 L pilot plant stirred tank reactors. Different conditions of agitation and aeration were employed as well as two different impeller geometries. The limiting factor for the productivity was oxygen supply to the fermentation broth, and the carbon substrate feed flow rate was controlled by the dissolved oxygen tension. In order to predict the available oxygen transfer in the system, the stoichiometry of the reaction equation including maintenance substrate consumption was first determined. Mainly based on the biomass concentration a viscosity prediction model was constructed, because rising viscosity of the fermentation broth due to hyphal growth of the fungus leads to significant lower mass transfer towards the end of the fermentation process. Each compartment of the model was shown to predict the experimental results well. The overall model can be used to predict key process parameters at varying fermentation conditions.  相似文献   

12.
A rotating fibrous-bed bioreactor (RFB) was developed for fermentation to produce L(+)-lactic acid from glucose and cornstarch by Rhizopus oryzae. Fungal mycelia were immobilized on cotton cloth in the RFB for a prolonged period to study the fermentation kinetics and process stability. The pH and dissolved oxygen concentration (DO) were found to have significant effects on lactic acid productivity and yield, with pH 6 and 90% DO being the optimal conditions. A high lactic acid yield of 90% (w/w) and productivity of 2.5 g/L.h (467 g/h.m(2)) was obtained from glucose in fed-batch fermentation. When cornstarch was used as the substrate, the lactic acid yield was close to 100% (w/w) and the productivity was 1.65 g/L.h (300 g/h.m(2)). The highest concentration of lactic acid achieved in these fed-batch fermentations was 127 g/L. The immobilized-cells fermentation in the RFB gave a virtually cell-free fermentation broth and provided many advantages over conventional fermentation processes, especially those with freely suspended fungal cells. Without immobilization with the cotton cloth, mycelia grew everywhere in the fermentor and caused serious problems in reactor control and operation and consequently the fermentation was poor in lactic acid production. Oxygen transfer in the RFB was also studied and the volumetric oxygen transfer coefficients under various aeration and agitation conditions were determined and then used to estimate the oxygen transfer rate and uptake rate during the fermentation. The results showed that the oxygen uptake rate increased with increasing DO, indicating that oxygen transfer was limited by the diffusion inside the mycelial layer.  相似文献   

13.
Campylobacter sputorum subspecies bubulus was grown in batch cultures in which the dissolved oxygen tension (d.o.t) was maintained at various constant levels. At a range of d.o.t. from 0.002 to 0.05 atm, which allowed good growth (mean generation time approximately 1.5 h), L-lactate was preferentially consumed before D-lactate. L-lactate oxidation was accompanied by equimolar acetate production during exponential growth. A value for YL-lactate (g dry weight bacteria per mol L-lactate) of 54 was determined. Net acetate production stopped when C. sputorum started to use D-lactate after consumption of L-lactate. When a culture growing exponentially at the expense of L-lactate was shifted from a d.o.t. of 0.02 atm to a d.o.t. of 0.15 atm, growth was impaired, and L-lactate consumption and corresponding acetate production diminished. This decrease correlated with a loss of lactate dehydrogenase activity after the shift. Campylobacter sputorum appeared to possess cytochromes of the b- and c-type and a carbon monoxide-binding pigment. Evidence is given that the principal site of oxygen damage is lactate dehydrogenase rather than the cytochrome chain.  相似文献   

14.
Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species–species interactions between D. bruxellensis and S. cerevisiae are still poorly understood.  相似文献   

15.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   

16.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   

17.
Lovastatin biosynthesis with Aspergillus terreus in batch fermentation reached 160 U/l in 161 h at pH 6.8 and a dissolved O tension maintained at 70%. At the end of repeated fed batch fermentations, the yield of lovastatin was increased by 37% though this took over twice as long as in the batch fermentation.  相似文献   

18.
A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
When the level of dissolved oxygen was increased to saturation in defined media fermentations of Streptomyces clavuligerus, the total duration of activity of the penicillin ring cyclization enzyme, isopenicillin N synthase (IPNS), was extended by at least 20 h; however, no increase in the stability of the ring expansion enzyme, desacetoxycephalosporin C synthase (DAOCS), was observed. Consequently, the conversion of the excreted intermediate penicillin N to cephamycin C was 15-20% less efficient at this high oxygen concentration. The increased dissolved oxygen level also led to the complete loss of IPNS and DAOCS activities for 4 h during the period of fastest growth, and the rate of specific cephamycin C production fell to zero. A several hundred fold increase in the level of iron in the defined media resulted in a sixfold improvement in the rate of specific cephamycin C production after 60 h fermentation. This increased rate appeared to be due to an elevation in the in vivo activities of a number of the cephamycin biosynthetic enzymes, particularly those catalysing later pathway steps.  相似文献   

20.
High-throughput (HT) miniature bioreactor (MBR) systems are becoming increasingly important to rapidly perform clonal selection, strain improvement screening, and culture media and process optimization. This study documents the initial assessment of a 24-well plate MBR system, Micro (micro)-24, for Saccharomyces cerevisiae, Escherichia coli, and Pichia pastoris cultivations. MBR batch cultivations for S. cerevisiae demonstrated comparable growth to a 20-L stirred tank bioreactor fermentation by off-line metabolite and biomass analyses. High inter-well reproducibility was observed for process parameters such as on-line temperature, pH and dissolved oxygen. E. coli and P. pastoris strains were also tested in this MBR system under conditions of rapidly increasing oxygen uptake rates (OUR) and at high cell densities, thus requiring the utilization of gas blending for dissolved oxygen and pH control. The E. coli batch fermentations challenged the dissolved oxygen and pH control loop as demonstrated by process excursions below the control set-point during the exponential growth phase on dextrose. For P. pastoris fermentations, the micro-24 was capable of controlling dissolved oxygen, pH, and temperature under batch and fed-batch conditions with subsequent substrate shot feeds and supported biomass levels of 278 g/L wet cell weight (wcw). The average oxygen mass transfer coefficient per non-sparged well were measured at 32.6 +/- 2.4, 46.5 +/- 4.6, 51.6 +/- 3.7, and 56.1 +/- 1.6 h(-1) at the operating conditions of 500, 600, 700, and 800 rpm shaking speed, respectively. The mixing times measured for the agitation settings 500 and 800 rpm were below 5 and 1 s, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号