首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence data from the mitochondrial 12S rRNA gene were combined with endogenous retrovirus sequences to study the position of the genus Miopithecus in the primate tree. The mitochondrial sequences indicated that Miopithecus is a true genus distinct from Cercopithecus, although talapoin monkeys are commonly referred to as dwarf guenons. The existence of two species of dwarf guenons, suggested by differences in coat color, pigmentation, and geographic location, was supported by substantial mitochondrial 12S rRNA gene divergence. In line with the informal proposal of J. Kingdon (1997, "The Kingdon Field Guide to African Mammals," Academic Press, London), we use the names Miopithecus talapoin for the southern, darker species and Miopithecus ougouensis for the northern, lighter-colored monkeys. Different 12S rRNA gene haplotypes found in M. ougouensis individuals suggest the possible existence of additional subspecies. Simian endogenous retrovirus (SERV) strain 23. 1 proviruses were introduced in the primate germ-line after the Cercopithecinae split from the Colobinae, estimated at around 9-14 million years ago. SERV sequences were used for timing of divergence events in Cercopithecinae and confirmed the close relationship between the genera Cercopithecus and Miopithecus, which was only weakly supported by the more variable mtDNA sequences in a distance analysis, demonstrating the utility of these pseudogenes in phylogenetic grouping.  相似文献   

2.
A complete endogenous type D viral genome has been isolated from a baboon genomic library. The provirus, simian endogenous retrovirus (SERV), is 8,393 nucleotides long and contains two long terminal repeats and complete genes for gag, pro, pol, and env. The primer binding site is complementary to tRNA(Lys)3, like in lentiviruses. The env GP70 protein is highly homologous to that of baboon endogenous virus (BaEV). PCR analysis of primate DNA showed that related proviral sequences are present in Old World monkeys of the subfamily Cercopithecinae but not in apes and humans. Analysis of virus and host sequences indicated that the proviral genomes were inherited from a common ancestor. Comparison of the evolution of BaEV, exogenous simian retrovirus types 1 to 3 (SRV1 to SRV3), and SERV suggests that SERV is ancestral to both BaEV and the SRVs.  相似文献   

3.
Fragments of genes of the “green-like” form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of eight species of haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio have been revealed and sequenced using previously developed oligonucleotide primers. The data obtained are used for the construction of phylogenetic trees on the basis of nucleotide sequences of RuBisCO genes and their conceptual translations into amino acid sequences. Comparative analysis of the 16S rRNA and RuBisCO gene trees reveals discrepancies between their topologies. According to a RuBisCO gene analysis, the genus Thioalkalivibrio is not monophyletic, and its inner divergence conforms to the significant morphological differences observed between the species. Presumably, horizontal (interspecies) gene transfer was involved in the evolution of the genus Thioalkalivibrio.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 378–386.Original Russian Text Copyright © 2005 by Tourova, Spiridonova, Berg, Kuznetsov, Sorokin.  相似文献   

4.
The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.We have sequenced an approximately 390-base-pair part of the mitochondrial 12S rRNA gene for 26 species of the major groups of African monkeys and apes and constructed an extensive phylogeny based upon DNA evidence. Not only is this phylogeny of great importance in classification of African guenons, but it also suggests rearrangements in traditional monkey taxonomy and evolution. Baboons and mandrills were found to be not directly related, while we could confirm that the known four superspecies of mangabeys do not form a monophyletic group, but should be separated into two genera, one clustering with baboons and the other with mandrills. Patas monkeys are clearly related to members of the genus Cercopithecus despite their divergence in build and habitat, while the talapoin falls outside the Cercopithecus clade (including the patas monkey). Correspondence to: A.C. van der Kuyl  相似文献   

5.
Sequences from nuclear mitochondrial pseudogenes (numts) that originated by transfer of genetic information from mitochondria to the nucleus offer a unique opportunity to compare different regimes of molecular evolution. Analyzing a 1621-nt-long numt of the rRNA specifying mitochondrial DNA residing on human chromosome 3 and its corresponding mitochondrial gene in 18 anthropoid primates, we were able to retrace about 40 MY of primate rDNA evolutionary history. The results illustrate strengths and weaknesses of mtDNA data sets in reconstructing and dating the phylogenetic history of primates. We were able to show the following. In contrast to numt-DNA, (1) the nucleotide composition of mtDNA changed dramatically in the different primate lineages. This is assumed to lead to significant misinterpretations of the mitochondrial evolutionary history. (2) Due to the nucleotide compositional plasticity of primate mtDNA, the phylogenetic reconstruction combining mitochondrial and nuclear sequences is unlikely to yield reliable information for either tree topologies or branch lengths. This is because a major part of the underlying sequence evolution model — the nucleotide composition — is undergoing dramatic change in different mitochondrial lineages. We propose that this problem is also expressed in the occasional unexpected long branches leading to the “common ancestor” of orthologous numt sequences of different primate taxa. (3) The heterogeneous and lineage-specific evolution of mitochondrial sequences in primates renders molecular dating based on primate mtDNA problematic, whereas the numt sequences provide a much more reliable base for dating.[Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

6.
Summary The coding and flanking sequences of the 18S-5S ribosomal RNA genes and the cytochrome oxidase subunit II gene of Zea diploperennis mitochondrial DNA have been determined and compared to the corresponding sequences of normal maize (Zea mays L.) Both length and substitution mutations are found in the coding region of the 18S rRNA gene, whereas only one substitution mutation is found in the coding region of cytochrome oxidase II. Sequence divergence between maize and Zea diploperennis is about one-tenth of that between wheat and maize. The rate of nucleotide divergence by base substitution is less for plant mitochrondrial genes than for comparable genes in animal mitochondria.  相似文献   

7.
The phylogeny of Old World monkeys has remained unresolved in part because of a lack of resolution in the Cercopithecinae. Competing morphological hypotheses have had Allen's swamp monkey (Allenopithecus nigroviridis) and the talapoins (Miopithecus spp.) as basal branches of either the tribe Cercopithecini or the tribe Papionini. Previous molecular analyses have not adequately addressed the issue. To better understand the evolutionary history of these primates, we sequenced and subjected to phylogenetic analysis 3.1 kb of 2 loci (TSPY and SRY) from the non-recombining portion of the Y-chromosome. Individuals from the genera Allenopithecus, Miopithecus, Erythrocebus, Chlorocebus, and Cercopithecus were surveyed and their sequences compared with those previously published for the Papionini and Colobinae. The results suggest Allenopithecus and Miopithecus are more closely related to the Cercopithecini than Papionini. Our data also support the hypothesis that within the Cercopithecini, Erythrocebus and Chlorocebus share a close evolutionary relationship, distinct from the other members of the tribe.  相似文献   

8.
Relationships of the newly discovered dwarf crocodiles from Mauritania were inferred from mitochondrial 12S sequences. Specimens from 13 different Crocodylus niloticus populations (from East Africa, West Africa and Madagascar) were compared. Additional representatives of the genus Crocodylus (one from Africa and one from Australia), the African genus Osteolaemus and the South American alligatorid Paleosuchus palpebrosus (as outgroup) were included in the analysis. Maximum-likelihood and Bayesian analyses yielded relationships that were strikingly different from currently prevailing phylogenetic hypotheses. Both analyses consistently revealed two groups, one consisting of the monophyletic West- and Central African populations and the other of a paraphyletic group containing the East African and Madagascan populations. High genetic divergence between those groups indicates separation on the species level. Furthermore ‘Ccataphractus is clearly shown not to be a member of the genus Crocodylus. The resulting nomenclatural changes are discussed. To cite this article: A. Schmitz et al., C. R. Palevol 2 (2003).  相似文献   

9.
Automated DNA sequencing of a fragment of the relatively slowly evolving mitochondrial 12S rRNA gene was used to distinguish primate species, and the method was compared with species determination based upon classical taxonomy. DNA from blood from 53 monkeys housed at the Stichting AAP Shelter for Exotic Animals, all Old World monkeys, was amplified by polymerase chain reaction (PCR) with a primer set spanning approximately 390 nucleotides of the mitochondrial 12S rRNA gene. The products were directly sequenced and compared with our database of primate 12S sequences. Many individuals were found to harbor a 12S sequence identical to one of the reference sequences. For others, phylogenetic methods were used for species estimation, which was especially informative in Cercopithecus species.  相似文献   

10.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

11.
Girella punctata and Girella leonina are sympatric sister species showing extensive distributional overlap in shallow rocky reefs in the Pacific Ocean south of the Japanese Islands. Differences between the two species in external morphological characters, such as number of pored lateral line scales, colour of opercular flap and shape of caudal fin, are congruent with genetic divergence. Nucleotide identity between the two species in the 3.3 kbp region of partial mitochondrial DNA containing the D-loop region, in 12S and 16S ribosomal RNA (rRNA) and transfer RNA genes is 95%. To estimate divergence time, Bayesian analysis was conducted using a dataset comprising concatenated nucleotide sequences from the two rRNA genes of three girellid and nine other fish species. Using the Elopomorpha – Clupeocephala split (265 million years ago (mya)) as a calibration point, divergence between G. punctata and G. leonina is estimated as having occurred 6.0±1.4 mya. Speciation is suggested to have been caused by geographical isolation associated with formation of the Japanese Islands, which resulted in disjunction of Girella habitat.  相似文献   

12.
Genetic variation within the macroura species group, which includes Sminthopsis macroura, S. virginiae, S. douglasi, and S. bindi, was examined through analyses of complete mitochondrial 12S rRNA gene sequences, partial control-region DNA sequences, and allozymes. Divergent genetic lineages appear to be present within S. macroura and S. virginiae, and it is likely that this genetic divergence equates to currently unrecognized taxonomic diversity. Specimens of S. macroura (as currently recognized) belong to three genetically distinct lineages that are highly divergent from one another. Two of these lineages may be synonymous with two previously recognized dunnart species—S. froggatti and S. stalkeri. The third appears to represent "true" S. macroura and is itself genetically heterogeneous, with a number of subgroups present within it that may also represent currently unrecognized taxa. The mitochondrial DNA sequence divergences observed between S. virginiae nitela and the two other S. virginiaesubspecies are equivalent to, or greater than, those noted between other dunnart species. Allozyme divergences between these subspecies were however slightly lower, and determination on whether S. virginiae nitela should be returned to full species status (S. nitela) may require further evidence. Phylogenetic relationships between species in the macroura group appear to have been partially resolved, with individual 12S rRNA and combined mitochondrial DNA analyses recovering S. bindi as the earliest diverging taxon. Other relationships between species in the group were either not consistently recovered or lacked strong support.  相似文献   

13.
The effective sizes of ancestral populations and species divergence times of six primate species (humans, chimpanzees, gorillas, orangutans, and representatives of Old World monkeys and New World monkeys) are estimated by applying the two-species maximum likelihood (ML) method to intron sequences of 20 different loci. Examination of rate heterogeneity of nucleotide substitutions and intragenic recombination identifies five outrageous loci (ODC1, GHR, HBE, INS, and HBG). The estimated ancestral polymorphism ranges from 0.21 to 0.96% at major divergences in primate evolution. One exceptionally low polymorphism occurs when African and Asian apes diverged. However, taking into consideration the possible short generation times in primate ancestors, it is concluded that the ancestral population size in the primate lineage was no smaller than that of extant humans. Furthermore, under the assumption of 6 million years (myr) divergence between humans and chimpanzees, the divergence time of humans from gorillas, orangutans, Old World monkeys, and New World monkeys is estimated as 7.2, 18, 34, and 65 myr ago, respectively, which are generally older than traditional estimates. Beside the intron sequences, three other data sets of orthologous sequences are used between the human and the chimpanzee comparison. The ML application to these data sets including 58,156 random BAC end sequences (BES) shows that the nucleotide substitution rate is as low as 0.6–0.8 × 10–9 per site per year and the extent of ancestral polymorphism is 0.33–0.51%. With such a low substitution rate and short generation time, the relatively high extent of polymorphism suggests a fairly large effective population size in the ancestral lineage common to humans and chimpanzees.[Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

14.
A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification–restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.  相似文献   

15.
Details of the phylogenetic relationships among tetrahymenine ciliates remain unresolved despite a rich history of investigation with nuclear gene sequences and other characters. We examined all available species of Tetrahymena and three other tetrahymenine ciliates, and inferred their phylogenetic relationships using nearly complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and small subunit (SSU) rRNA gene sequences. The inferred phylogenies showed the genus Tetrahymena to be monophyletic. The three “classical” morphology-and-ecology-based groupings are paraphyletic. The SSUrRNA phylogeny confirmed the previously established australis and borealis groupings, and nine ribosets. However, these nine ribosets were not well supported. Using cox1 gene, the deduced phylogenies based on this gene revealed 12 well supported groupings, called coxisets, which mostly corresponded to the nine ribosets. This study demonstrated the utility of cox1 for resolving the recent phylogeny of Tetrahymena, whereas the SSU rRNA gene provided resolution of deeper phylogenetic relationships within the genus.  相似文献   

16.
This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) “Pterois” clade (Pterois miles and Pterois volitans), and (2) “Pteropterus–Dendrochirus” clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the “Pteropterus–Dendrochirus” clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4–8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.  相似文献   

17.
The fragmented mitochondrial ribosomal RNAs (rRNAs) of the green algaeChlamydomonas eugametos andChlamydomonas reinhardtii are discontinuously encoded in subgenic modules that are scrambled in order and interspersed with protein coding and tRNA genes. The mitochondrial rRNA genes of these two algae differ, however, in both the distribution and organization of rRNA coding information within their respective genomes. The objectives of this study were (1) to examine the phylogenetic relationships between the mitochondrial rRNA gene sequences ofC. eugametos andC. reinhardtii and those of the conventional mitochondrial rRNA genes of the green alga,Prototheca wickerhamii, and land plants and (2) to attempt to deduce the evolutionary pathways that gave rise to the unusual mitochondrial rRNA gene structures in the genusChlamydomonas. Although phylogenetic analysis revealed an affiliation between the mitochondrial rRNA gene sequences of the twoChlamydomonas taxa to the exclusion of all other mitochondrial rRNA gene sequences tested, no specific affiliation was noted between theChlamydomonas sequences andP. wickerhamii or land plants. Calculations of the minimal number of transpositions required to convert hypothetical ancestral rRNA gene organizations to the arrangements observed forC. eugametos andC. reinhardtii mitochondrial rRNA genes, as well as a limited survey of the size of mitochondrial rRNAs in other members of the genus, lead us to propose that the last common ancestor ofChlamydomonas algae contained fragmented mitochondrial rRNA genes that were nearly co-linear with conventional rRNA genes.  相似文献   

18.
Complete nucleotide sequences of the cytochrome b and 12S rRNA genes and partial sequences of the mitochondrial 16S rRNA gene and the nuclear ɛ-globin gene were obtained from multiple exemplars of the New Guinean dasyurid, Myoictis. Allozyme data were also obtained from most of the same animals. The molecular data show that the genus comprises a number of genetically distinct lineages which correspond with groups proposed by Woolley (2005) on the basis of a number of morphological traits, including the form of the tail i.e. Myoictis leucura (sp. nov.), M. melas, M. wallacei and M. wavicus (new status). Divergence dates estimated from the weighted-average distances for the combined cytochrome b and 12S rRNA data, calibrated with a dasyurid-thylacine divergence 25 million years ago, suggest that the early cladogenic events separating Myoictis took place in the late Miocene. Subsequent separation of M. wavicus and M. leucura from a common ancestor as well as some genetic differentiation within M. melas, took place in the medial Pliocene.  相似文献   

19.
Conventionally, Lepus capensis is considered to range across large parts of Africa, the Middle East, Central and Far East Asia. However, a recent morphological study restricts cape hares tentatively to a small range in the Western Cape Region of South Africa and groups all other L. capensis-type hares from South Africa into a new species: L. centralis. Here, we studied molecular relationships among L. capensis-type hares from South Africa. Phenotypically and morphologically the individuals matched either the newly described L. capensis or L. centralis. We examined 66 hares for allelic variation at 13 microsatellite loci and for sequence variation of the hypervariable domain 1 of the mitochondrial control region. All tree-generating analyses of the currently obtained sequences and all South African cape hare sequences downloaded from GenBank revealed monophyly when compared to sequences of various other Lepus species. A network analysis indicated close evolutionary relationships between hares of the “L. capensis-phenotype” and the “L. centralis-phenotype” (according to Palacios et al. 2008) from the southwest of the Western Cape, relative to their pronounced evolutionary divergence from all other more central, northern, and north-eastern L. capensis-type hares. F-statistics, a Bayesian admixture STRUCTURE model, as well as a principal coordinate analysis of microsatellite data indicated close genetic relationships among all South African L. capensis-type hares studied presently. A coalescence model-based migration analysis for microsatellite alleles indicated gene flow between most of the considered subspecies of cape hare, including L. capensis capensis and L. capensis centralis, theoretically sufficient to balance stochastic drift effects. Concordantly, AMOVA models revealed only little effects of partitioning microsatellite variation into the two suggested morpho-species “L. capensis” and “L. centralis”. Under an “Interbreeding Species Concept” (e.g. a strict or relaxed Biological Species Concept), the current molecular data demonstrate conspecificity of the two proposed morpho-species “L. capensis” and “L. centralis”. Based on the present molecular data the differentiation of subspecies of cape hares from southern Africa is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号