首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prourokinase (scu-PA),a thrombolytic agent,was inserted between Glyl 18 and Ilel 19 with foreign anti-thrombosis functional motif (Lys-Gly-Asp-Trp-motif) to construct a multi-functional chimeric molecule.The molecular model of a chimera was simulated and pre-dicted.The recombinant chimeric protein was expressed by the baculovirus-insect cell expression system and puri-fied by affinity chromatography.The physico-chemical characteristics of the chimeric molecule were assayed.The thrombolytic activity was determined to be 90000 IU/mg of fibrinolytic special activity by the fibrin-plate method.The anti-thrombosis activities were also assayed with IC50 of 9.6 μM by an inhibition test of ADP-induced platelet aggregation.  相似文献   

2.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

3.
Fusarium sp. BLB, which produces a strongly fibrinolytic enzyme, was isolated from plant leaf (Hibiscus). Fibrinolytic alkaline protease was purified from a culture filtrate of Fusarium sp. BLB by precipitation with (NH4)2SO4 and column chromatography with CM-Toyopearl 650M and Superdex 75. The purified enzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight was 27,000 by SDS-PAGE. Maximum activity of protease was observed at pH 9.5 and 50°C. Purified protease was active between pH 2.5 and 11.5 and was found to be stable up to 50°C. The enzyme derived from Fusarium sp. BLB is useful for thrombolytic therapy because this enzyme showed pH resistance. The activity was inhibited by diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. The N-terminal amino acid sequence of the enzyme showed a similarity to those of proteases from Fusarium sp., Streptomyces griseus, Bos taurus bovine, Katsuwo pelamis digestive tract, and Lumbricus rubellus.  相似文献   

4.
Several blue-green algae were surveyed for the occurrence of the hydrogenase which was assayed by the oxyhydrogen or Knallgas reaction in the intact organisms. In aerobically grown cultures, the reaction was detectable in Anabaena cylindrica, Nostoc muscorum and in two Anabaena variabilis species, whereas virtually no activity was observed in Anacystis nidulans and Cyanophora paradoxa. In these latter two algae, the reaction was, however, found after growth under molecular hydrogen for several days, which drastically increased the activity levels with all the algae tested. In the nitrogen fixing species, the activity of the Knallgas reaction was enhanced when all combined nitrogen was omitted from the media. H2 and hydrogenase could not significantly support the CO2-fixation in photoreduction experiments with all blue-green algae investigated here. Hydrogenase was assayed by the dithionite and methyl viologen dependent evolution of hydrogen and was found to be present with essentially the same specific activity levels in preparations of both heterocysts and vegetative cells from Anabaena cylindrica. Na2S2O4 as well as H2 supported the C2H2-reduction of the isolated heterocysts. The H2-dependent C2H2-reduction did not require the presence of oxygen but was strictly light-dependent where H2 served as an electron donor to photosystem I of these cells. It is concluded that hydrogen can be utilized by two different pathways in blue-green algae.Abbreviations Chl chlrophyll - CP creatine phosphate - CP kinase creatine phosphokinase - DCMU N-(3,4-dichlorophenyl)N,N-dimethylurea  相似文献   

5.
Site-directed recombination in the genome of transgenic tobacco   总被引:35,自引:0,他引:35  
Summary The plant genome responds to the bacteriophage P1-derived loxP-Cre site-specific recombination system. Recombination took place at loxP sites stably integrated in the tobacco genome, indicating that the Cre recombinase protein, expressed by a chimeric gene also stably resident in the genome, was able to enter the nucleus and to locate a specific 34 bp DNA sequence. An excisional recombination event was monitored by the acquisition of kanamycin resistance, which resulted from the loss of a polyadenylation signal sequence that interrupted a chimeric neomycin phosphotransferase 11 gene. Molecular analysis confirmed that the excision had occurred. Recombination occurred when plants with the integrated loxP construction were stably re-transformed with a chimeric cre gene and when plants with the introduced loxP construction were cross-bred with those carrying the chimeric cre gene. As assayed phenotypically, site-specific recombination could be detected in 50%–100% of the plants containing both elements of the system. Kanamycin resistance was detected at 2–3 weeks after re-transformation and in the first leaf of hybrid seedlings. This demonstration of the effectiveness of the loxP-Cre system in plants provides the basis for development of this system for such purposes as directing site-specific integration and regulation of gene expression.  相似文献   

6.
Flooding is one of the most serious environmental stresses that affect plant growth and productivity. Flooding causes premature senescence which results in leaf chlorosis, necrosis, defoliation, cessation of growth and reduced yield. This study was conducted to determine the effects of autoregulated cytokinin production on the flooding tolerance of Arabidopsis thaliana plants. A chimeric gene containing the senescence-specific SAG12 promoter and the ipt gene coding for isopentenyl transferase, a rate-limiting enzyme in the cytokinin biosynthesis pathway, was constructed. The chimeric gene was introduced into Arabidopsis plants by Agrobacterium-mediated vacuum infiltration. Four transgenic lines were chosen for flooding tolerance determinations. DNA hybridization analysis and PCR confirmed that all four of the transgenic lines carried the ipt gene. The segregation of kanamycin resistance in the T2 generation indicated 1 to 3 integration events. GUS expression and RT-PCR of the ipt gene confirmed the senescence-specificity of the SAG12 promoter. Morphologically, the transgenic lines appeared healthy and normal. Transgenic plants began to flower at the same time as wild-type plants, but the period from flowering to senescence was lengthened by 7 to 12 days. Tolerance of the transgenic plants to waterlogging and complete submergence was assayed in three independent experiments. All four transgenic lines were consistently more tolerant to flooding than wild-type plants. The results indicated that endogenously produced cytokinin can regulate senescence caused by flooding stress, thereby, increasing plant tolerance to flooding. This study provides a novel mechanism to improve flooding tolerance in plants.  相似文献   

7.
Glutamine synthetase (GS) (EC 6.3.1.2) has been purified 67-fold fromNocardia corallina. The apparentM r of the GS subunit was approximately 56,000. Assuming the enzyme is a typical dodecamer this indicates a particle mass for the undissociated enzyme of 672,000. The GS is regulated by adenylylation and deadenylylation, and subject to feedback inhibition by alanine and glycine. The pH profiles assayed by the -glutamyl transferase method were similar for NH4 +-treated and untreated cell extracts and an isoactivity point was not obtained from these curves. GS activity was repressed by (NH4)2SO4 and glutamate. Cells grown in the presence of glutamine, alanine, proline and histidine had enhanced levels of GS activity. The GS ofN. corallina cross-reacted with antisera prepared against GS from a Gram-negativeThiobacillus ferrooxidans strain but not with antisera raised against GS from a Gram-positiveClostridium acetobutylicum strain.  相似文献   

8.
The yeast two-hybrid system was used to further characterize the interactions between the Brassica S receptor kinase (SRK) and three putative substrates, ARC1 and the two thioredoxin h proteins, THL1 and THL2. Interactions were generally detectable with kinase domains of both Class I and Class II SRKs. Chimeric constructs were made between the SRK910 kinase domain and the non-interacting Arabidopsis RLK5 kinase domain. Only one chimeric construct, SRR2, interacted with THL1 and THL2, while none of the chimeras were able to interact with ARC1. SRR2 is largely made up of RLK5 kinase domain with the N-terminal end being derived from the SRK910 kinase domain and was the only chimeric construct that retained kinase activity. Deletion or substitution of a conserved cysteine at the N-terminal end of the SRK910 kinase domain resulted in loss of interaction with THL1 and THL2, while the addition of this cysteine to a related receptor kinase, SFR1, conferred the ability to interact with the thioredoxin h proteins. In addition, substitution of the cysteines in the THL1 active site abolished the interaction. Lastly, the two Arabidopsis thioredoxin h clones most closely related to THL1 and THL2 were found to interact with the SRK kinase domains. Thus, the nature of the interaction of the thioredoxin h clones with SRK involves the reducing activity of these proteins and is restricted to the class of thioredoxin h proteins which have the variant CPPC active site.  相似文献   

9.
To develop a rice cultivar that would be suitable for direct-seedingcultivation in cooler temperate regions, we generated transgenic rice plants inwhich a rice encoding a -class glutathioneS-transferase (GST) under the control of a maize ubiquitinpromoter. GSTs have been suggested to be responsible for tolerance to variousstresses such as cold, salt and drought by detoxification of xenobioticcompounds and reactive oxygen species. A total of 87 R0 transgenicrice plants harboring a chimeric GST gene were generatedusing Agrobacterium mediated transformation. ThreeR2 lines homozygous for the transgene were assayed for GST activityand had higher GST and glutathione peroxidase activities thannon-transformants.Seedlings of the transgenic lines demonstrated greatly enhanced germination andgrowth rates at low temperature grown under submergence. The GST transgeniclines should be useful for breeding rice cultivars suitable for direct-seedingcultivation in cooler temperate regions.  相似文献   

10.
Summary Transgenic sweet orange (Citrus sinensis L. Osbeck) plants have been obtained by Agrobacterium tumefaciens-mediated gene transfer. An hypervirulent A. tumefaciens strain harboring a binary vector that contains the chimeric neomycin phosphotransferase II (NPT II) and ß-glucuronidase (GUS) genes was cocultivated with stem segments from in vivo grown seedlings. Shoots regenerated under kanamycin selection were harvested from the stem segments within 12 weeks. Shoot basal portions were assayed for GUS activity and the remaining portions were shoot tip grafted in vitro for production of plants. Integration of the GUS gene was confirmed by Southern analysis. This transformation procedure showed the highest transgenic plant production efficiency reported for Citrus.Abbreviations BA benzyladenine - CaMV cauliflowermosaic virus - GUS ß-glucuronidase - LB Luria Broth - MS Murashige and Skoog - NAA naphthalenacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PEG polyethylene glycol - RM rooting medium - SRM shoot regeneration medium  相似文献   

11.
Bacillus stearothermophilus leucine aminopeptidase II (LAPII) was fused at its C-terminal end with the raw-starch-binding domain of Bacillus sp. strain TS-23 -amylase. The chimeric enzyme (LAPsbd), with an apparent molecular mass of approximately 61 kDa, was overexpressed in IPTG-induced Escherichia coli cells and purified to homogeneity by nickel-chelate chromatography. The purified enzyme retained LAP activity and adsorbed raw starch. LAPsbd was stable at 70°C for 10 min, while the activity of wild-type enzyme was completely abolished under the same environmental condition. Compared with the wild-type enzyme, the twofold increase in the catalytic efficiency for LAPsbd was due to a 218% increase in the k cat value.  相似文献   

12.
Kärkönen A  Fry SC 《Planta》2006,223(4):858-870
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.  相似文献   

13.
The maize transposable element, Activator (Ac), is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. In this paper, we describe somatic and germinal transactivation of Ds by chimeric transposase genes in whole plants. Constructs containing either the Ds element or the Ac transposase open reading frame (ORF) were introduced into lettue. The Ds element was located between either the 35S or the Nos promoter and a chimeric spectinomycin resistance gene (which included a transit peptide), preventing expression of spectinomycin resistance. The genomic coding region of the Ac transposase was expressed from the 35S promoter. Crosses were made between 104 independent R1 plants containing Ds and three independent R1 plants expressing transposase. The excision of Ds in F1 progenies was monitored using a phenotypic assay on spectinomycin-containing medium. Green sectors in one-third of the F1 families indicated transactivation of Ds by the transposase at different developmental stages and at different frequencies in lettuce plants. Excision was confirmed using PCR and by Southern analysis. The lack of green sectors in the majority of F1 families suggests that the majority of T-DNA insertion sites are not conducive to excision. In subsequent experiments, the F1 plants containing both Ds and the transposase were grown to maturity and the F2 seeds screened on medium containing spectinomycin. Somatic excision was again observed in several F2 progeny; however, evidence for germinal excision was observed in only one F2 family.  相似文献   

14.
15.
The starch-binding domain of Bacillus sp. strain TS-23 α-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel–chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70°C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K m value. Starch-binding assays showed that the K d and B max values for the fusion enzyme were 2.3 μM and 0.35 μmol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris–HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption–elution cycle with a purification of 11.4-fold.  相似文献   

16.
About 3,000 bacterial colonies with esterase activities were isolated from soil samples by enrichment culture and halo-size on Luria broth-tributyrin (LT) plates. The colonies were assayed for esterase activity in microtiter plates using enantiomerically pure (R)- and (S)-2-phenylbutyric acid resorufin ester (2PB-O-res) as substrates. Two enantioselective strains (JH2 and JH13) were selected by the ratio of initial rate of hydrolysis of enantiomerically pure (R)- and (S)-2-PB-O-res. When cell pellets were used, both strains showed hgh apparent enantioselectivity (E app>100) for (R)-2PB-O-res and were identified asExiguobacterium acetylicum. The JH13 strain showed high esterase activity onp-nitrophenyl acetate (pNPA), but showed low lipase activity onp-nitrophenyl palmitate (pNPP). The esterase was located in the soluble fraction of the cell extract. The crude intracellular enzyme preparation was stable at a pH range from 6.0 to 11.0.  相似文献   

17.
The nitrate reductase activity (NR) of selected uptake hydrogenase-positive (hup +) and uptake hydrogenase-negative (hup -) strains of Bradyrhizobium japonicum were examined both in free-living cells and in symbioses with Glycine max L. (Marr.) cv. Williams. Bacteria were cultured in a defined medium containing either 10 mM glutamate or nitrate as the sole nitrogen source. Nodules and bacteriods were isolated from plants that were only N2-dependent or grown in the presence of 2 mM KNO3. Rates of activity in nodules were determined by an in vivo assay, and those of cultured cells and bacteriods were assayed after permeabilization of the cells with alkyltrimethyl ammonium bromide. All seven strains examined expressed NR activity as free-living cells and as symbiotic forms, regardless of the hup genotype of the strain used for inoculation. Although the presence of nitrate increased nitrate reduction by cultures cells and nodules, no differences in NR activity were observed between bacteroids isolated from nodules of plants fed with nitrate or grown on N2-fixation exclusively. Cultured cells, nodules and bacteriods of strains with hup - genotype (USDA 138, L-236, 3. 15B3 and PJ17) had higher rates of NR activity than those with hup + genotype (USDA 110, USDA 122 DES and CB1003). These results suggest that NR activity is reduced in the presence of a genetic determinant associated with the hup region of B. japonicum.Abbreviations EDTA ethylene-diamine tetraacetic acid - Hup hydrogen uptake - MOPS 3-(N-morpholino)-propane sulfonic acid - NR nitrate reductase - PVP polyvinyl-polypyrrolidone - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

18.
In order to create novel β-glucosidase constructs, 8 kinds of chimeric β-glucosidases were constructed using overlapping polymerase chain reaction (PCR) based on Cellvibrio gilvus (CG) and Thermotoga maritima (TM) genes. Two kinds of novel chimeric β-glucosidases (No. 6 and No. 8 type) were selected and their properties characterized. SDS-PAGE analysis showed that both constructs had a molecular mass of 80 kDa. The optimum pH of No. 6 chimeric β-glucosidase was found to be 3.0 and 5.0, showing varying maximum activity according to the buffer used. No. 8 chimeric enzyme was found to be optimally active at a pH of 4.5 and the optimum temperature of No.6 and No.8 chimeric β-glucosidases was reported to be 60°C, respectively. The Km values of both novel chimeric enzymes were calculated to be 0.012 mM and 0.0082 mM, respectively and the characteristics of the novel chimeric enzymes were to lie between those of the parental enzymes.  相似文献   

19.
The initial (in vivo) and total (activity present after preincubation with CO2 and Mg2+) activities of ribulose bisphosphate carboxylase were both assayed in extracts of leaves of soybean (Glycine max) plants which had been grown under 4 different irradiance levels. The total carboxylase activity per unit leaf area decreased with decreased irradiance during growth but was not different on a dry weight basis. The initial activity as a percentage of the total activity was unchanged (approximately 95%) except in leaves of plants grown at the lowest irradiance (74%). When the plants grown at the lowest irradiance were exposed to high irradiance, the initial activity was increased to 93% of the total. Light saturated rates of photosynthesis per unit leaf area were lower and saturated at lower irradiance for plants grown at lower irradiances. Initial carboxylase activity was correlated closely (r2=0.84) with leaf photosynthesis rate on a dry weight basis.  相似文献   

20.
Summary Thalli of Lobaria pulmonaria (L.) Hoffm., a nitrogen-fixing epiphyte common in mesic temperate forests, were collected in a Douglas-fir (Pseudotsuga menziesii Franco) forest near Corvallis, Oregon, and maintained for 20 to 40 days in controlled-environment chambers with atmospheric CO2 concentrations of 374 and 700 ll-1. Nitrogenase activity, which was assayed by the acetylene reduction method, was approximately doubled in the lichen maintained in elevated CO2. Increases in nitrogen fixation by lichens may be an important part of the integrated ecosystem response to rising CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号