首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isocitrate dehydrogenase from cyanobacteria   总被引:2,自引:0,他引:2  
The present communication describes the properties of isocitrate dehydrogenase in crude extracts from the unicellular Anacystis nidulans and from heterocysts and vegetative cells of Nostoc muscorum and Anabaena cylindrica. The activity levels of this enzyme are much higher in heterocysts than in vegetative cells of N. muscorum and A. cylindrica. Isocitrate dehydrogenase is virtually inactive in vegetative cells of A. cylindrica. The enzyme is negatively regulated by the reduction charge and scarcely affected by oxoglutarate in the three cyanobacteria. The inhibition by ATP and ADP is competitive with respect to isocitrate and NADP+ in A. cylindrica and N. muscorum and noncompetitive in A. nidulans. Isocitrate dehydrogenase from the three cyanobacteria seems to be a hysteretic enzyme. All the experimental data suggest that the major physiological role of isocitrate and the isocitrate dehydrogenase in heterocysts is not to generate reducing equivalents for N2-fixation. Oxoglutarate formed by the enzyme reaction is likely required for the biosynthesis of glutamate inside the heterocysts. Thioredoxin preparations from spinach chloroplasts or from A. cylindrica activate isocitrate dehydrogenase from either heterocysts or vegetative cells of A. cylindrica. Activation is completed within seconds and requires dithiothreitol besides thioredoxin. The thioredoxin preparation which activates isocitrate dehydrogenase also activates NADP+-dependent malate dehydrogenase from spinach chloroplasts or heterocysts of A. cylindrica. Isocitrate dehydrogenase from A. cylindrica is deactivated by oxidized glutathione. It is speculated that isocitrate dehydrogenase and thioredoxin play a role in the differentiation of vegetative cells to heterocysts.  相似文献   

2.
Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon   总被引:10,自引:2,他引:10  
Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen.  相似文献   

3.
The activity of deoxyribonucleic acid polymerase in some species of algae   总被引:2,自引:1,他引:1  
1. The activities of DNA polymerase preparations from the algae Euglena gracilis, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anabaena variabilis and Anacystis nidulans were measured. The blue-green algae Anabaena and Anacystis contain a 5-20-fold higher activity of the enzyme than do the green algae. DNA polymerases from the blue-green algae show a pH optimum of 9 and prefer a relatively low Mg(2+) concentration (1-3mm). DNA polymerases from the green algae, however, display a pH optimum between 7.5 and 8.5 and an optimum Mg(2+) concentration of 8mm. With all algae, a higher polymerase activity was obtained with denatured salmon sperm DNA as template than with native DNA. All four deoxyribonucleoside 5'-triphosphates must be present for full activity of the polymerases. 2. With one exception, the deoxyribonuclease activities in the preparations, measured under conditions of the DNA polymerase assay, are low compared with corresponding preparations from Escherichia coli. Chlamydomonas extracts contain a high deoxyribonuclease activity. 3. After purification on columns of DEAE-cellulose, the polymerase activity was linear over a wide range of protein concentrations, except for Chlamydomonas preparations, where the observed deviation from linearity was probably attributable to the high nuclease activity. 4. DNA polymerases from all these algae bind strongly to DNA-cellulose; 6-40-fold purifications of the enzyme were obtained by chromatography on columns of DNA-cellulose. 5. The partially purified polymerases of Euglena and Anacystis are heat-labile but become much more heat-stable when tested in the presence of DNA.  相似文献   

4.
Glycolate metabolism in cyanobacteria   总被引:2,自引:0,他引:2  
A comparative analysis of glycolate excretion in 11 cyanobacteria showed that 8 strains, although grown and assayed in air, excreted glycolate. The largest quantities were excreted by the filamentous strains Plectonema boryanum 73110 and Anabaena cylindrica (Lemm). The carbon lost by excretion was at most 9% of the net fixed carbon in air for heterocystous cyanobacteria but increased (up to 60%) in some strains under a high pO2 (0.03 kPa CO2 in pure O2). A. cylindrica excreted glycolate at a maximum level of 2 and 10 μmol (mg chl a )−1 h−1 in air and at high pO2, respectively. The excretion continued for several hours. Increases in light intensity and pO2 and a shift in pH from 7 to 9 increased the amount of glycolate excreted. A. cylindrica also showed the most O2-sensitive fixation of CO2. In vitro activity of phosphoglycolate phosphatase (EC 3.1.3.18) was found in all strains tested, with the highest activities noted for Gloeobacter violaceus 7.82 and Gloeothece 6909 and for young cultures of A. cylindrica . The lowest activities were found in Anabaena 7120 and Anacystis nidulans 625, strains excreting no or only minor quantities of glycolate.  相似文献   

5.
Abstract An ultrastructural study has been performed to elucidate the effect of active polypeptide(s) from neo-peptone on heterocyst induction in Anabaena cylindrica [1]. There was an immediate aggregation of A. cylindrica cells and a clumping of filamentous appendages in the mucilaginous sheath on the addition of active polypeptide(s) from neo-peptone. However, there was no change in the cell wall and cell membrane ultrastructure. An increase in cell length, contortion and disintegration of thylakoids, disappearance of polyphosphate bodies and an accumulation of polyglucose bodies were observed after 18 h of treatment. The double heterocysts induced show a normal heterocyst ultrastructure with well-developed polar nodules between the heterocysts and the vegetative cells, as well as between two heterocysts.
It appears that the inductive effect of active polypeptide(s) from neo-peptone is mediated through their specific binding to filamentous appendages in the mucilaginous sheath.  相似文献   

6.
D-Ribulose 1,5-bisphosphate carboxylase was purified from the blue-green alga Anabaena cylindrica (Lemm) by procedures involving acid precipitation, ammonium sulfate fractionation, and Sephadex G-200 gel filtration. The enzyme was homogeneous by the criterion of polyacrylamide disc gel electrophoresis and was a multimer of a single-size polypeptide chain of 54,000 daltons. The carboxylases from four species of blue-green algae (Anabaena, Nostoc strain MAC, Agmenellum quadruplicatum strain PR-6, and Anacystis nidulans strain TX20) were closely similar in molecular size, since enzyme activity was eluted at the same volume after sucrose gradient centrifugation. Further analysis by gel filtration indicated that the four blue-green algal carboxylases were nearly identical in molecular weight, ranging from 449 to 453,000. The amino acid composition of the Anabaena carboxylase was determined and was found to resemble closely the composition of the large subunit from eukaryotic photosynthetic organisms.  相似文献   

7.
The effect of the nitrogen source on the cellular activity of ferredoxin-nitrate reductase in different cyanobacteria was examined. In the unicellular species Anacystis nidulans, nitrate reductase was repressed in the presence of ammonium but de novo enzyme synthesis took place in media containing either nitrate or not nitrogen source, indicating that nitrate was not required as an obligate inducer. Nitrate reductase in A. nidulans was freed from ammonium repression by L-methionine-D,L-sulfoximine, an irreversible inhibitor of glutamine synthetase. Ammonium-promoted repression appears therefore to be indirect; ammonium has to be metabolized through glutamine synthetase to be effective in the repression of nitrate reductase. Unlike the situation in A. nidulans, nitrate appeared to play an active role in nitrate reductase synthesis in the filamentous nitrogen-fixing strains Anabaena sp. strain 7119 and Nostoc sp. strain 6719, with ammonium acting as an antagonist with regard to nitrate.  相似文献   

8.
Photoautotrophic cultures of the unicellular cyanobacterium Synechococcus 6301 (Anacystis nidulans) possessed a single [2Fe-2S] ferredoxin with a midpoint redox potential of -385 mV. Determination of the amino acid sequence of the ferredoxin showed that it consisted of 98 residues, with methionine and tryptophan both absent, and with only the four cysteine residues that are required to co-ordinate the iron-sulphur cluster. Comparisons with other ferredoxin sequences showed that most resemblance was to those from filamentous cyanobacteria, with up to 87% homology. There was less resemblance to the ferredoxins of unicellular cyanobacteria, with 25 differences when compared with that from another Synechococcus sp. However, the sequence of Synechococcus 6301 ferredoxin was identical with that derived for a gene sequence for a putative ferredoxin from the genotypically closely related Synechococcus 7942 (Anacystis nidulans R2). In contrast, the sequence showed substantial differences from that corresponding to a putative ferredoxin gene from Synechococcus 6301 reported by Cozens & Walker [(1988) Biochem. J. 252, 563-569].  相似文献   

9.
Anacystis nidulans infected by AS-1 cyanophage contains an endonuclease (AS-1 endonuclease) which splits host DNA but not AS-1 phage DNA [Szekeres, M. (1981) Virology, 111, 1-10]. AS-1 phage DNA proved to be resistant not only to AS-1 endonuclease but also to a number of restriction endonucleases the recognition sites of which contain a central dG-dC dinucleotide. Since an unmodified 5'dG-dC dinucleotide was shown to be present at the sites at which DNA is cleaved by AS-1 endonuclease, the results suggest that the sites attacked preferentially by the AS-1 endonuclease are specifically protected on the AS-1 DNA molecule. The modification of AS-1 DNA was shown to occur specifically in infected Anacystis because AS-1 DNA fragments which are normally resistant to AS-1 endonuclease became susceptible to this enzyme if inserted into pBR322 plasmid and cloned in Escherichia coli. AS-1 DNA was shown to contain about 5% of a modified nucleotide which was not 5-methyldeoxycytidylic acid. Results presented and our earlier data suggest that in Anacystis infected by AS-1 phage, a restriction/modification-like system operates which is able to eliminate 'unwanted' (host) DNA selectively.  相似文献   

10.
Phycobiliproteins obtained by dissociation of phycobilisomes were reassociated in vitro with intact thylakoids or isolated photosystems I and II preparations obtained from cyanophytes (prokaryotes) or green algae (eukaryotes) to form bound phycobilisome complexes. Energy transfer from Fremyella diplosiphon phycobiliproteins to chlorophyll a of reaction centers I and II was measured in: complexes containing intact thylakoids of the cyanophytes F. diplosiphon or Anacystis nidulans and the eukaryotic algae Euglena gracilis and mutants of Chlamydomonas reinhardtii; complexes containing isolated photosystem II particles of A. nidulans or C. reinhardtii; and complexes containing reaction center I of F. diplosiphon or C. reinhardtii. Energy transfer from phycoerythrin to chlorophyll a of photosystem II could be demonstrated in complexes containing phycobilisomes bound to cyanophyte thylakoids or isolated photosystem II particles of A. nidulans or C. reinhardtii. Bound phycobilisomes did not transfer energy to photosystem II within green algae thylakoids containing altered forms of light-harvesting chlorophyll a/b-protein complex (LHC) II antenna, reduced amounts of LHC II, or chlorophyll b, or chlorophyll b-less mutants, nor to chlorophyll a of photosystem I of intact thylakoids or isolated reaction centers. We conclude that phycobilisomes can form a specific and functional association with photosystem II particles of both cyanophytes and eukaryotic thylakoids. This interaction appears to be hindered by the presence of LHC II antenna in the eukaryotic thylakoids.  相似文献   

11.
We have taken advantage of the transformation properties of the cyanobacterium Anacystis nidulans R2 to investigate the importance of thioredoxin for photosynthetic growth. The gene encoding thioredoxin m, designated trxM, was cloned from A. nidulans using a synthetic oligonucleotide probe. Based on the nucleotide sequence, thioredoxin m of A. nidulans is composed of 107 amino acids and shares 84, 48, and 48% sequence identity with thioredoxins from Anabaena, spinach, and Escherichia coli, respectively. The trxM gene is single copy and is transcribed on a 510-nucleotide mRNA. We demonstrate that disruption of the trxM gene with a kanamycin resistance gene cartridge is a lethal mutation. Although dispensable in E. coli, thioredoxin is essential for the photosynthetic growth of A. nidulans.  相似文献   

12.
The XhoI-SalGI fragment of the plasmid pCI DNA was inserted into the SalGI site of the cyanobacterium Anacystis nidulans R2 integrative vector plasmid pIAH4. The fragment incorporates the endoglucanase gene of Clostridium thermocellum cloned earlier within the 6.7 kb DNA sequence. The recombinant plasmid DNA was transformed into Anacystis nidulans R2 cells. The cloned endoglucanase gene was shown to express in the cyanobacterium cells. The enzyme synthesized is accumulated within the cytoplasm of Anacystis nidulans cells and is not secreted into the periplasm.  相似文献   

13.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.  相似文献   

14.
Protoplasts that remained metabolically active for several days were obtained by treating cells of Microcystis aeruginosa, Anacystis nidulans, and Anabaena flos-aquae with lysozyme. Photosynthetic and respiratory rates were near those of control cells. Lysozymeresistant cells were isolated which may be genetic mutants.  相似文献   

15.
Chlamydomonas reinhardtii Dangerad 11–32(90) (−), which exhibits C3 properties, and Anacystis nidulans (Strain no. UTEX 625), which exhibits C4 properties, were used to study the effects of triacontanol on growth, photosynthesis and photorespiration. Photosynthetic rate was measured as CO2 uptake and the O2 inhibition of photosynthesis was used as a measure of photorespiration. Triacontanol dissolved in chloroform and dispersed in Tween-20 and triacontanol colloidally dispersed in an aqueous solution of sodium tallow alkyl sulfate were tested. Chlamydomonas cultures increased significantly in cell number after 4 days, and in chlorophyll content after 3 days of treatment with 2.3 × 10−8 M TRIA in chloroform/Tween-20. In cultures of Anacystis the chlorophyll content became significantly higher 3 days after treatment with 2.3 × 10−9 M TRIA and the cell number was noticeably higher than the controls.
CO2 uptake by triacontanol-treated Chlamydomonas cultures was about the same in both 2 and 21% O2, and the O2 inhibition was significantly reduced as compared with the controls. Photosynthesis in Anacystis was O2-insensitive under the experimental condition used. When Anacystis was treated with triacontanol there was no change in the rate of CO2 uptake and no change in the O2 sensitivity of its CO2 uptake. It appears that triacontanol affects some process which regulated the balance between photosynthesis and photorespiration, but other processes which result in increased growth are probably also affected.  相似文献   

16.
1. The biliproteins C-phycocyanin and allophycocyanin were purified from the blue-green alga Anabaena variabilis by ammonium sulphate fractionation and gel filtration. 2. An assay procedure that enabled the proportion of the two pigments, present as a mixture, to be determined was devised by using the data provided by spectrophotometric analysis of the purified biliproteins. 3. The degree of association and relative proportions of the two pigments were analysed by the application of this procedure to the components separated by thin-layer gel filtration. 4. The C-phycocyanin/allophycocyanin ratio remained essentially constant in algal extracts prepared at various stages throughout the growth cycle or after growth under conditions of reduced illumination. 5. The behaviour of the C-phycocyanin aggregate species from Anacystis nidulans suggested that they were of appreciably lower molecular weight than those observed in extracts of Anabaena variabilis.  相似文献   

17.
Production of adenosine 5'-[35S]sulphatophosphate by a partially purified ATP sulphurylase from Anabaena cylindrica was inhibited by AMP, ADP and P1. Decreases in enzyme activity in the presence of these inhibitors were reversed by increasing the concentrations of ATP. The adenine nucleotides inhibited the enzyme competitively with respect to ATP. In the presence of P1, ATP showed a positive co-operative effect on enzyme activity. The inhibition by P1 was enhanced by increasing concentrations of MG2+. The effects of the adenine nucleotides and the interaction of P1 and Mg2+ on ATP sulphurylase activity are discussed in relation to the regulation of sulphate assimilation via the energy metabolism of the alga.  相似文献   

18.
Sequence-specific 1H and 13C NMR assignments have been made for residues that form the five-stranded parallel beta-sheet and the flavin mononucleotide (FMN) binding site of oxidized Anabaena 7120 flavodoxin. Interstrand nuclear Overhauser enhancements (NOEs) indicate that the beta-sheet arrangement is similar to that observed in the crystal structure of the 70% homologous long-chain flavodoxin from Anacystis nidulans [Smith et al. (1983) J. Mol. Biol. 165, 737-755]. A total of 62 NOEs were identified: 8 between protons of bound FMN, 29 between protons of the protein in the flavin binding site, and 25 between protons of bound FMN and protons of the protein. These constraints were used to determine the localized solution structure of the FMN binding site. The electronic environment and conformation of the protein-bound flavin isoalloxazine ring were investigated by determining 13C chemical shifts, one-bond 13C-13C and 15N-1H coupling constants, and three-bond 13C-1H coupling constants. The carbonyl edge of the flavin ring was found to be slightly polarized. The xylene ring was found to be nonplanar. Tyrosine 94, located adjacent to the flavin isoalloxazine ring, was shown to have a hindered aromatic ring flip rate.  相似文献   

19.
A Vioque 《Nucleic acids research》1992,20(23):6331-6337
The genes encoding the RNA subunit of ribonuclease P from the unicellular cyanobacterium Synechocystis sp. PCC 6803, and from the heterocyst-forming strains Anabaena sp. PCC 7120 and Calothrix sp. PCC 7601 were cloned using the homologous gene from Anacystis nidulans (Synechococcus sp. PCC 6301) as a probe. The genes and the flanking regions were sequenced. The genes from Anabaena and Calothrix are flanked at their 3'-ends by short tandemly repeated repetitive (STRR) sequences. In addition, two other sets of STRR sequences were detected within the transcribed regions of the Anabaena and Calothrix genes, increasing the length of a variable secondary structure element present in many RNA subunits of ribonuclease P from eubacteria. The ends of the mature RNAs were determined by primer extension and RNase protection. The predicted secondary structure of the three RNAs studied is similar to that of Anacystis and although some idiosyncrasies are observed, fits well with the eubacterial consensus.  相似文献   

20.
Structural and chemical properties of a flavodoxin from Anabaena PCC 7119   总被引:1,自引:0,他引:1  
Structural and chemical properties of a flavodoxin from Anabaena PCC 7119 are described. The first 36 residues of the amino-terminal amino acid sequence have been determined and show extensive homology with flavodoxins isolated from other sources. Anabaena flavodoxin exhibits a net negative change (-3) in the helix-1 segment as found with other cyanobacterial flavodoxins Synechococcus 6301 (Anacystis nidulans) and Nostoc MAC, but in contrast to the net positive charge found in this region in the case of flavodoxins isolated from nitrogen-fixing bacteria (Azotobacter and Klebsiella). The FMN cofactor can be reversibly resolved from the apoprotein by trichloroacetic acid treatment. Apoflavodoxin, thus prepared, binds FMN with a Kd value of 0.1 nM and binds riboflavin with a decreased affinity (Kd = 5 microM) at pH 7.2. The apoprotein is stable in dilute solutions at pH values around 7 but readily denatures at pH 8 as judged from loss in flavin-binding ability and by ultraviolet circular dichroism spectroscopy. Oxidation-reduction potential studies at pH values of 7 and 8 show OX/SQ couples of -195 mV and -255 mV, respectively, and show SQ/HQ couples of -390 mV and -418 mV, respectively. From these data, the binding constant for the FMN semiquinone is calculated to be approx. 5-fold tighter and the binding of the FMN hydroquinone is approx. 10(5)-fold weaker than that of the oxidized FMN to the apoprotein. Anabaena flavodoxin functions as an effective mediator of electron transfer from ferredoxin-NADP(+)-reductase to cytochrome c with a turnover number [4.5-5) x 10(3) min-1); a values similar to that determined for Anabaena ferredoxin. The flavodoxin binds tightly to the reductase with Kd values of 6.4 and 8.5 microM at pH values of 7.0 and 8.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号