首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship of increasing prey productivity, a measure incorporating prey settlement and body growth, to changes in the relative impact of two predator groups, birds and the sea star, Pisaster ochraceus (Brandt) on a competitively dominant mussel, Mytilus californianus were examined. The purpose of this experiment was twofold, 1) to determine if the separate effects of each predator group on prey abundance increased as prey productivity increased and 2) to determine if the relative impacts of the two predator groups diverged as prey productivity increased. In this experiment, the separate impact of each predator group increased with increasing prey productivity. However, the relative impact of each predator group did not diverge with increasing prey productivity. Unlike previous studies that suggested with increasing prey productivity the relative effect of two predator groups should diverge, this experiment suggested that communities can have more redundant predator groups than originally thought. The results of an analysis using a proportional hazards model suggested that despite increasing prey productivity, birds and the sea star were equal in their ability to curb population increases by M. californianus. These results highlight the need to carefully consider what type of species to species comparisons to make when attempting to discern the relative roles of different predator groups in a community.  相似文献   

2.
SUMMARY 1. We investigated the effect of temperature on chemical signalling in a predator–prey model system (planktivorous fish and Daphnia galeata ). Life-history changes in Daphnia in response to chemical cues (kairomones) derived from fish have become a paradigm for chemically induced anti-predator defences.
2. As temperature can affect both predator and prey, we carried out two experiments to disentangle these effects. In order to test for temperature effects on the predator, we kept prey at a single temperature and exposed them to kairomones from fish exposed to two different temperatures. Daphnia exhibited a higher intrinsic rate of population increase ( r ) when exposed to fish kairomones produced at high rather than low temperature. Assuming a positive correlation between r (because of an earlier maturation and/or increased clutch sizes) and kairomone concentration, our results suggest that kairomone production increases with rising temperature.
3. In the second experiment, to study the influence of temperature on the prey, Daphnia were kept at two different temperatures and exposed to fish kairomones produced at one constant temperature. We found no interaction between the effects of fish kairomone and temperature on Daphnia life history, suggesting that temperature does not directly alter life-history responses to fish kairomones.
4. Our results suggest that temperature influences Daphnia life history through its effects on fish kairomone concentration, but that temperature does not affect the strength of the response of Daphnia to the presence of fish.  相似文献   

3.
In this paper we explore variation in the predator-prey interaction between mink Mustela vison and muskrat Ondatra zibethicus across Canada based on 25 years of mink (predator) and muskrat (prey) data from the Hudson's Bay Company. We show that predator–prey interactions have stronger signatures in the west of Canada than in the east. In particular, we show that the observed phase plot trajectories of mink and muskrat rotate significantly clock-wise, consistent with predator–prey theory. We also investigate four phases of the mink muskrat interaction sequence (predator crash phase, prey recovery phase, etc.) and show that they are all consistent with a strong coupling in the west, whereas the presence of generalist predators and alternative preys can explain deviations from this pattern in the east.  相似文献   

4.
We propose a scaled version of the Rosenzweig–MacArthur model using both Type I and Type II functional responses that incorporates the size dependence of interaction rates. Our aim is to link the energetic needs of organisms with the dynamics of interacting populations, for which survival is a result of a game-theoretic struggle for existence. We solve the scaled model of predator–prey dynamics and predict population level characteristics such as the scaling of coexistence size ranges and the optimal predator–prey size ratio. For a broad class of such models, the optimal predator–prey size ratio given available prey of a fixed size is constant. We also demonstrate how scaling predictions of prey density differ under resource limitation vs. predator drawdown. Finally, we show how evolution of predator size can destabilize population dynamics, compare scaling of predator–prey cycles to previous work, as well as discuss possible extensions of the model to multispecies communities.  相似文献   

5.
Recognising that species interact across a range of spatial scales, we explore how landscape structure interacts with temperature to influence persistence. Specifically, we recognise that few studies indicate thermal shifts as the proximal cause of species extinctions; rather, species interactions exacerbated by temperature result in extinctions. Using microcosm‐based experiments, as models of larger landscape processes, we test hypotheses that would be problematic to address through field work. A text‐book predator–prey system (the ciliates Didinium and Paramecium) was used to compare three landscapes: an unfragmented landscape subjected to uniform temperatures (10, 20, 30°C); a fragmented landscape (potentially hosting metapopulations) subjected to these three temperatures; and a fragmented landscape subjected to a spatial temperature gradient (~ 10 to 30°C) – despite the prevalence of natural temperature ecoclines this is the first time such an analysis has been conducted. Initial thermal response‐analysis (growth, mortality, and movement measured between 10 and 30°C) suggested that as temperature increased, the predator might drive the prey to extinction. Thermal preferences (measured at 5 temperatures between 10 and 30°C), indicated that both predator and prey preferred warmer temperatures, with the predator exhibiting the stronger preference, suggesting that cooler regions might act as a prey‐refuge. The landscape level observations, however, did not entirely support the predictions. First, in the unfragmented landscape, increased temperature led to extinctions, but at the highest temperature (where the predator growth can be reduced) the prey survived. Second, at high temperatures the fragmented landscape failed to host metapopulations that would allow predator–prey persistence. Third, the thermal ecocline did not provide heterogeneity that improved stability; rather it forced both species to occupy a smaller realized space, leading toward extinctions. These findings reveal that temperature‐impacted rates and temperature preferences combine to drive predator–prey dynamics and persistence across landscapes.  相似文献   

6.
Mark C. Urban 《Oikos》2008,117(7):1037-1049
General predictions of community dynamics require that insights derived from local habitats can be scaled up to explain phenomena across geographic scales. Across these larger spatial extents, adaptation can play an increasing role in determining the outcome of species interactions. If local adaptation is common, then our ability to generalize measures of species interaction strength across communities will be limited without an additional understanding of the genetic variation underlying interaction traits. In the context of predator–prey interactions, prey individuals commonly are expected to reduce risky foraging behaviors and subsequent growth under predation threat. However, rapid growth into a large body size can defend against gape-limited predators, creating a tradeoff between increased predation risk due to elevated foraging activity and decreased predation risk due to large size. Here I combine field observations, natural selection experiments, and common garden assays to understand potential adaptations of spotted salamander Ambystoma maculatum larvae to gape-limited and gape-unconstrained predators. Field observations and natural selection trials suggested antagonistic selection on prey body size among ponds dominated by gape-limited predator salamanders A. opacum and gape-unconstrained beetle larvae Dytiscus . In common garden experiments, prey from sites with high gape-limited predation risk grew larger than those from other sites, suggesting the evolution of rapid growth into a prey size refuge. Larvae from all sites grew to a large size when exposed to the gape-limited N. viridescens predator's kairomones. Hence, induced rapid growth into a size refuge may be an adaptive response to gape-limited predation risk. Results point to an important role for cross-community generalizations based on functional classifications of predators by their gape constraints and inter-site genetic variation in prey growth rates and behaviors.  相似文献   

7.
The arms race of adaptation and counter adaptation in predator–prey interactions is a fascinating evolutionary dynamic with many consequences, including local adaptation and the promotion or maintenance of diversity. Although such antagonistic coevolution is suspected to be widespread in nature, experimental documentation of the process remains scant, and we have little understanding of the impact of ecological conditions. Here, we present evidence of predator–prey coevolution in a long-term experiment involving the predatory bacterium Bdellovibrio bacteriovorus and the prey Pseudomonas fluorescens , which has three morphs (SM, FS, and WS). Depending on experimentally applied disturbance regimes, the predator–prey system followed two distinct evolutionary trajectories, where the prey evolved to be either super-resistant to predation (SM morph) without counter-adaptation by the predator, or moderately resistant (FS morph), specialized to and coevolving with the predator. Although predation-resistant FS morphs suffer a cost of resistance, the evolution of extreme resistance to predation by the SM morph was apparently unconstrained by other traits (carrying capacity, growth rate). Thus we demonstrate empirically that ecological conditions can shape the evolutionary trajectory of a predator–prey system.  相似文献   

8.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

9.
The increased temperature associated with climate change may have important effects on body size and predator–prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator–prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator–prey interactions to assess how temperature affects predator–prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator–prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator–prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability.  相似文献   

10.
Both theoretical and empirical evidence indicate that in systems where insect predators have longer developmental times than their prey the predators have little impact on the abundance of their prey. In assessing the 'effectiveness' of a predator for biological control one should take into account that selection maximizes predator fitness, not its effctiveness as a biocontrol agent. Therefore, predators that have a long developmental time relative to their prey are unlikely to be the best biocontrol agents. If these results can be generalized to other predator–prey systems, then it is clear that an understanding of predator–prey dynamics can only be achieved by studying predators.  相似文献   

11.
The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.  相似文献   

12.
William A Mitchell 《Oikos》2009,118(7):1073-1083
Behavioral games between predators and prey often involve two sub-games: 'pre-encounter' games affecting the rate of encounter between predators and prey (e.g. predator–prey space games, Sih 2005 ), and 'post-encounter' games that influence the outcome of encounters (e.g. waiting games at prey refugia, Hugie 2003 , and games of vigilance, Brown et al. 1999 ). Most models, however, focus on only one or the other of these two sub-games.
I investigated a multi-behavioral game between predators and prey that integrated both pre-encounter and post-encounter behaviors. These behaviors included landscape-scale movements by predators and prey, a type of prey vigilance that increases immediately after an encounter and then decays over time ('ratcheting vigilance'), and predator management of prey vigilance. I analyzed the game using a computer-based evolutionary algorithm. This algorithm embedded an individual-based model of ecological interactions within a dynamic adaptive process of mutation and selection. I investigated how evolutionarily stable strategies (ESS) varied with the predators' learning ability, killing efficiency, density and rate of movement. I found that when predators learn prey location, random prey movement can be an ESS. Increased predator killing efficiency reduced prey movement, but only if the rate of predator movement was low. Predators countered ratcheting vigilance by delaying their follow-up attacks; however, this delay was reduced in the presence of additional predators. The interdependence of pre-and post-encounter behaviors revealed by the evolutionary algorithm suggests an intricate co-evolution of multi-behavioral predator–prey behavioral strategies.  相似文献   

13.
High shore intertidal ectotherms must withstand temperatures which are already close, at or beyond their upper physiological thermal tolerance. Their behaviour can provide a relief under heat stress, and increase their survival through thermoregulation. Here, we used infrared imaging to reveal the thermoregulatory behavioural strategies used by the snail Littorina saxatilis (Olivi) on different microhabitats of a high shore boulder field in Finistère (western France) in summer. On our study site, substrate temperature is frequently greater than L. saxatilis upper physiological thermal limits, especially on sun exposed microhabitats. To maintain body temperatures within their thermal tolerance window, withdrawn snails adopted a flat posture, or elevated their shells and kept appended to the rock on the outer lip of their aperture with dried mucous (standing posture). These thermal regulatory behaviours lowered snail body temperatures on average by 1–2 °C. Aggregation behaviour had no thermoregulatory effect on L. saxatilis in the present study. The occupation of biogenic microhabitats (barnacles) was associated with a 1 °C decrease in body temperatures. Barnacles and microhabitats that experienced low sun exposure, low thermal fluctuations and low thermal maxima, could buffer the heat extremes encountered at high shore level especially on sun exposed microhabitats.  相似文献   

14.
In agricultural systems, polyphagous beetles and spiders are abundant components of the beneficial arthropod community. Although data on the dietary ranges of these groups is increasing, remarkably little is understood regarding how individuals interact with their prey at small spatial scales. We demonstrate the utility of a spatially-explicit network model that integrates predator behaviour using predator-prey co-occurrences. Three co-occurrence matrices, one each for June, July and August, were generated using Vortis suction sample data collected from an 80 point grid imposed on a field of winter wheat. Heuristic predator-prey linkages, based on positive spatial co-occurrence, were imposed on these three matrices to create networks. It was found that primary consumers were highly aggregated and showed a strong tendency to co-occur. This contrasted with patterns of predator–predator or predator–prey co-occurrences that either aggregated to their prey or were weak and more scattered. These patterns could not be explained by either competition for resources or body size differences. Procrustean methods indicated that the networks were temporally dynamic, consistently achieving rates of turnover >60%. A negative relationship was found between decreasing predator–prey co-occurrence in the network and the number of prey positives in the guts of those predators. For large polyphagous beetles, the closer they were to their prey at the field scale, the more likely they were to have eaten them. This simple underlying relationship suggests that spatial co-occurrence networks can be used to predict feeding behaviour and could make a valuable contribution to food web structuring.  相似文献   

15.
Optimization of cryptic coloration in heterogeneous habitats   总被引:3,自引:0,他引:3  
We present a theoretical approach to the optimization of crypsis in heterogeneous habitats. Our model habitat consists of two different microhabitats, and the optimal combination of crypsis in the microhabitats is supposed to maximize the probability of escaping detection by a predator. The probability of escaping detection for a prey is a function of: (i)degree of crypsis, (ii) probability of occurrence in the microhabitats and (iii) probability of encountering a predator in the microhabitats. Because crypsis is background-specific there is a trade-off between crypsis in two visually different microhabitats. Depending on the nature of the trade-off, the optimal coloration is either a compromise between the requirements of the differing microhabitats or entirely adapted to only one of them. An increased risk of predation in one of the microhabitats favours increased crypsis in that microhabitat. Because the trade-off constrains possible optimal solutions, it is not possible to predict the optimal coloration only from factors (i)-(iii). However, habitat choice may fundamentally change the situation. If minimizing predation risk does not incur any costs, the prey should exclusively prefer the microhabitat where it has a lower probability of encountering a predator and better crypsis. The implications of these results for variation in cryptic coloration and polymorphism are discussed.  相似文献   

16.
Abstract 1. All other things equal, predator capture rates are expected to depend on encounter rate with prey, prey escape capability (including prey defences), and on predator agility. Ectotherm predators and their prey both respond to increasing temperature by increased activity, i.e. predators increase their search area and prey may enhance their escape capability. This means that, as temperature changes, the ability of a predator to catch prey will decrease, increase, or remain unchanged depending on the relative effect of temperature on predator and prey. Their responses may further be differentially moulded by light conditions depending on whether the predator is diurnally or nocturnally active. It was hypothesised that flying Diptera are vulnerable to carabid beetles only at low temperatures and over the full temperature range for spiders because carabids, in contrast to spiders, are not built to catch swiftly moving prey. 2. The first experiment examined the spontaneous locomotor activity of the predators and of fruit flies at different temperatures (5, 10, 15, 20, 25, and 30 °C) and light conditions (light, dark). A second experiment examined the effect of temperature and light on the predation rate of two carabid beetles (Pterostichus versicolor and Calathus fuscipes) and two spiders (Clubiona phragmitis and Pardosa prativaga) using fruit flies (Drosophila melanogaster) as prey. 3. All four predators and the fruit fly increased their locomotory activity at higher temperatures. Activity of the carabid beetles peaked at intermediate temperatures; spiders and fruit flies were most active at the highest temperatures. Predation rate of the spiders increased with temperature whereas the beetles caught flies only at low temperatures (5 and 10 °C). 4. Diurnal variation in temperature may bring different prey groups within the set of potential prey at different times of the day or at different seasons. The ability of many carabid beetles to forage at low temperatures may have nutritional benefits and increases the diversity of interactions in terrestrial food webs.  相似文献   

17.
The larval amphibian community of temporary pond ecosystems has served as a model for studies in community ecology, with a majority of this work being conducted in mesocosms. Recent research has suggested that mesocosms may overestimate ecological effects; therefore, experimental studies conducted under field conditions are required to gauge the results of mesocosm studies. To assess a species interaction under more natural conditions, we conducted a series of field experiments examining the predator–prey interaction between beetle larvae ( Dytiscus sp.; predator) and larval wood frogs Rana sylvatica (prey) in central Pennsylvania, USA. Quantitative sampling of woodland ponds indicated that beetle larvae of the genus Dytiscus were the most common predator of tadpoles. In a field enclosure experiment, dytiscids were effective predators of tadpoles in the pond environment. Moreover, tadpoles avoided areas in a pond containing caged dytiscids, demonstrating that tadpoles recognize the chemical stimuli of predators in complex environments. The results of this study are consistent with data from prior laboratory and mesocosm studies and suggest that these venues can produce reliable interpretations of predator–prey dynamics in this community.  相似文献   

18.
Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15–34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.  相似文献   

19.
While the majority of studies on dispersal effects on patterns of coexistence among species in a metacommunity have focused on resource competitors, dispersal in systems with predator–prey interactions may provide very different results. Here, we use an analytical model to study the effect of dispersal rates on coexistence of two prey species sharing a predator (apparent competition), when the traits of that predator vary. Specifically, we explore the range in immigration rates where apparent competitors are able to coexist, and how that range changes with predator selectivity and efficiency. We find that if the inferior apparent competitor has a higher probability of being consumed, it will require less immigration to invade and to exclude the superior prey as the predator becomes more opportunistic. However, if the inferior apparent competitor has a lower probability of being consumed (and lower growth rates), higher immigration is required for the inferior prey to invade and exclude the superior prey as the predator becomes more opportunistic. We further find that the largest range of immigration rates where prey coexist occurs when predator selectivity is intermediate (i.e. they do not show much bias towards consuming one species or the other). Increasing predator efficiency generally reduces the immigration rates necessary for the inferior apparent competitor to invade and exclude the superior apparent competitor, but also reduces the range of immigration rates where the two apparent competitors can coexist. However, when the superior apparent competitor has a higher probability of being consumed, increased predator efficiency can increase the range of parameters where the species can coexist. Our results are consistent with some of the variation observed in the effect of dispersal on prey species richness in empirical systems with top predators.  相似文献   

20.
Intertidal organisms must episodically contend with the rigors of both the terrestrial and the marine environments. While body temperatures during high tide are driven primarily by water temperature, aerial body temperatures are driven by multiple environmental factors such that temperature of an organism during low tide is usually quite different from air temperature. Thus, whereas decades of research have investigated the effects of water temperature on intertidal species, considerably less is known about the physiological impacts of temperature during aerial exposure at low tide, especially with regard to the interaction of aerial body temperature with other stressors. We examined the interactive effects of aerial body temperature and food supply on the survival of two intertidal blue mussels, Mytilus galloprovincialis and Mytilus trossulus. Survival was monitored for nine weeks using a simulated tidal cycle, with two levels of food and three levels of aerial body temperature (30, 25, and 20 °C). Decreased food supply significantly reduced the survival of mussels, but only under the 30 °C treatment. In the other two thermal regimes there were no significant effect of food on survival. When aerial body temperatures are high, food availability may have a greater effect on intertidal organisms. Decreases in ocean productivity have been linked to increased in ocean temperatures, thus intertidal organisms may become more susceptible to thermal stress as climates shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号