首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
M J Paine  S Ayivor  A Munro  P Tsan  L Y Lian  G C Roberts  C R Wolf 《Biochemistry》2001,40(45):13439-13447
NADPH-cytochrome P450 oxidoreductase (P450 reductase, EC 1.6.2.4) is an essential component of the P450 monooxygenase complex and binds FMN, FAD, and NADPH cofactors. Residues Tyr140 and Tyr178 are known to be involved in FMN binding. A third aromatic side chain, Phe181, is also located in the proximity of the FMN ring and is highly conserved in FMN-binding proteins, suggesting an important functional role. This role has been investigated by site-directed mutagenesis. Substitution of Phe181 with leucine or glutamine decreased the cytochrome c reductase activity of the enzyme by approximately 50%. Ferricyanide reductase activity was unaffected, indicating that the FAD domain was unperturbed. The mutant FMN domains were expressed in Escherichia coli, and the redox potentials and binding energies of their complexes with FMN were determined. The affinity for FMN was decreased approximately 50-fold in the Leu181 and Gln181 mutants. Comparison of the binding energies of the wild-type and mutant enzymes in the three redox states of FMN suggests that Phe181 stabilizes the FMN-apoprotein complex. The amide 1H and 15N resonances of the Phe181Leu FMN domain were assigned; comparison of their chemical shifts with those of the wild-type domain indicated that the effect of the substitution on FMN affinity results from perturbation of two loops which form part of the FMN binding site. The results indicate that Phe181 cooperates with Tyr140 and Tyr178 to play a major role in the binding and stability of FMN.  相似文献   

2.
Site-directed mutagenesis was employed to investigate the role of Cys566 in the catalytic mechanism of rat liver NADPH-cytochrome P-450 oxidoreductase. Rat NADPH-cytochrome P-450 oxidoreductase and mutants containing either alanine or serine at position 566 were expressed in Escherichia coli and purified to homogeneity. Substitution of alanine at position 566 had no effect on enzymatic activity with the acceptors cytochrome c and ferricyanide but did increase trans-hydrogenase activity with 3-acetylpyridine adenine dinucleotide phosphate by 79%. The Km for NADPH was increased 2.5-fold, and the NADP+ KI was increased 4.8-fold compared with that found for the wild-type enzyme. The conservative substitution, Ser566, produced a 50% decrease in cytochrome c reductase activity whereas activity with ferricyanide was decreased 57%, and 3-acetylpyridine adenine dinucleotide phosphate activity was unaffected. The NADPH Km was increased 4.6-fold, and the NADP+ KI increased 7.6-fold. The dependence of cytochrome c reductase activity on the KCl concentration was markedly altered by the Cys566 substitutions. Maximum activity for the wild-type enzyme was observed at approximately 0.18 M KCl whereas maximum activity for the mutant enzymes was observed between 0.04 and 0.09 M KCl. The pH dependence of cytochrome c reductase activity, cytochrome c Km, and flavin content were unaffected by these substitutions. These results demonstrate that Cys566 is not essential for activity of rat liver NADPH-cytochrome P-450 oxidoreductase although the cysteine side chain does affect the interaction of NADPH with the enzyme.  相似文献   

3.
P S Stayton  S G Sligar 《Biochemistry》1990,29(32):7381-7386
Cytochrome P-450cam cationic surface charges at Lys 344, Arg 72, and Lys 392 have been altered by site-directed mutagenesis techniques. The residues at Lys 344 and Arg 72 were previously suggested as salt bridge contacts in the cytochrome b5-cytochrome P-450cam association complex and implicated in the physiological putidaredoxin-cytochrome P-450cam complex [Stayton, P. S., Poulos, T. L., & Sligar, S. G. (1989) Biochemistry 28, 8201-8205]. Mutations to neutralize the basic charge at Arg 72 (R72Q) and to both neutralize and reverse the charge at Lys 344 (K344Q, K344E) resulted in alteration of NADH oxidation rates in the reconstituted physiological electron-transfer system, which is rate limited by putidaredoxin-cytochrome P-450cam electron transfer. The steady-state Vmax values were apparently unperturbed, suggesting that the observed rate differences were largely attributable to Km effects. The Km values observed for the K344Q (24 microM) and K344E (32 microM) mutants are in the direction expected for neutralization and reversal of a salt bridge charge interaction. A control mutation at a basic surface charge located away from the proposed site of interaction, Lys 392 (K392Q), resulted in overall activities quantitated by NADH oxidation rates that are similar to that of wild-type cytochrome P-450cam. Calculation of the cytochrome P-450cam electrostatic field revealed a patch of positive potential at the modeled cytochrome b5 interaction site lying directly above the nearest proximal approach to the buried heme prosthetic group. These results provide experimental and theoretical evidence for the modeled cytochrome P-450cam binding site implicated in both cytochrome b5 and putidaredoxin association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A cDNA clone coding for cytochrome P-450 oxidoreductase was isolated from a guinea-pig liver cDNA library. The cDNA, MSr2, contained a complete coding region of 678 amino acids. The amino acid sequence of the guinea-pig cytochrome P-450 oxidoreductase showed approx. 90% identities with those of rat, human, rabbit, pig enzymes indicating conservation of primary structure of the enzyme during evolutionary divergence of species. The high conservation of acidic residues of the enzyme sustained the importance of them to maintain its function [corrected].  相似文献   

5.
Rat liver microsomal NADPH-cytochrome P-450 reductase was prepared free of detectable amounts of FMN by a new procedure based on the exchange of this flavin into apoflavodoxin. The resulting FMN-free reductase binds NADP in the oxidized state with the same affinity (Kd = 5 microM) and stoichiometry (1:1 molar ratio) as does the native enzyme. Both the native and FMN-free reductase catalyze rapid reduction of ferricyanide, but the ability to reduce th 5,6-benzoflavone-inducible form of the liver microsomal cytochrome P-450 (P-450LM4) is lost upon removal of FMN. The FMN-free enzyme was reconstituted with artificial flavins which, in the free state, have oxidation-reduction potentials ranging from -152 to -290 mV, including 5-carba-5-deaza-FMN and several FMN analogs with a halogen or sulfur substituent on the dimethylbenzene portion of the ring system. Enzyme reconstituted with 5-carba-5-deaza-FMN has catalytic properties which are not significantly different from those of the FMN-free reductase, and is unable to reduce P-450LM4. On the other hand, the ability to reduce P-450LM4 and the other FMN-dependent activities of the native reductase are restored by substitution of several other analogs for FMN, but the kinetics of P-450LM4 reduction, studied under anaerobic conditions by stopped flow spectrophotometry, are significantly altered. The oxidation-reduction behavior of enzyme reconstituted with 7-nor-7-Br-FMN is substantially different from that of the native enzyme, and less thermodynamic stabilization of the semiquinone is observed with this flavin analog. In contrast, the oxidation-reduction properties of enzyme containing 8-nor-8-mercapto-FMN are similar to those of the native enzyme, but the spectral properties are significantly different. As shown in a stopped flow experiment, reduction of this FMN analog precedes reduction of P-450LM4 when a complex of the flavoprotein and P-450LM4 is allowed to react with NADPH. Our experiments support a sequence of electron transfer in this enzyme system as follows: NADPH leads to FAD leads to FMN leads to P-450. We propose that the enzyme cycles between a le- and a 3e-reduced state during turnover and that electrons are donated to acceptors via the reaction, FMNH2 leads to FMNH ..  相似文献   

6.
T D Porter  T W Beck  C B Kasper 《Biochemistry》1990,29(42):9814-9818
cDNA clones to rat liver NADPH-cytochrome P-450 oxidoreductase were used to isolate genomic clones from a Wistar-Furth inbred rat genomic DNA library. Fifteen exons containing the coding region and 3'-nontranslated segment of the P-450 reductase gene were identified, spanning 20 kilobases of DNA contained in 3 lambda-Charon 35 clones. The organization of this single copy gene reveals a general correspondence between exons and structural domains of the protein, with the segment responsible for anchoring the reductase to the microsomal membrane and several segments involved in FMN, FAD, and NADPH binding encoded by discrete exons.  相似文献   

7.
Resonance Raman spectra were observed for the threonine-301 to serine or valine mutant as well as the wild type of rabbit liver microsomal cytochrome P-450 [laurate(omega-1)-hydroxylase] (P-450(omega-1], which were prepared through site-directed mutagenesis. The high-spin marker resonance Raman (RR) bands became similarly stronger for all the P-450s examined in the oxidized form upon addition of laurate, and the RR spectra in the higher frequency region of the oxidized, reduced and CO-adduct forms did not distinctly differ among the P-450s examined. Nevertheless, the Fe-CO stretching mode (vFe-CO) of the CO adduct exhibited an upshift for the valine mutant, suggesting positional proximity of Thr-301 to bound CO like Thr-252 of P-450cam, in agreement with the expectation from the sequence analysis. The vFe-CO band was shifted to higher frequency upon binding of normal alkyl fatty acids with C10 or longer alkyl chain but little affected by binding of shorter fatty acids.  相似文献   

8.
A covalent complex between purified rat liver microsomal NADPH-cytochrome P-450 reductase and horse cytochrome c was formed through cross-linking studies with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at low ionic strength. The purified cross-linked derivative shows that this product is a 1:1 complex containing one molecule each of the flavoprotein and cytochrome. The covalent complex had almost completely blocked the electron transfer from NADPH to exogenous cytochrome c or the rabbit liver microsomal cytochrome P-450 induced by phenobarbital, indicating that the cross-linked cytochrome c covers the electron-accepting site of the reductase. These results suggest that the covalently cross-linked derivative is a valid model of the noncovalent electron transfer complex. Although the exact number and site of the cross-linked location were not determinable, in cytochrome c the amide bond originates from Lys-13 and in reductase it might be at any one of six different side chain carboxyl groups in the two neighboring cluster acidic residues, Asp-207, -208, and -209, and Glu-213, Glu-214, and Asp-215. It is therefore proposed that the six clustered carboxyl groups on reductase are in an exposed location near the area where one heme edge comes close to the molecular surface.  相似文献   

9.
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2′,5′ ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 μM for NADPH and 16 μM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min −1nmol−1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min−1 lnmo−1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.  相似文献   

10.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

11.
Considerable differences were observed among several cytochrome P-450 species upon mapping of proteolytic digests, although certain preparations derived from rabbits were not distinguished by this technique. Several NADPH-cytochrome P-450 reductases gave peptide maps rather similar to each other. The results support and extend other evidence that microsomal cytochromes P-450 are not necessarily closely-related polypeptides.  相似文献   

12.
Transfer of reducing equivalents from NADPH to the cytochromes P450 is mediated by NADPH-cytochrome P450 oxidoreductase, which contains stoichiometric amounts of tightly bound FMN and FAD. Hydrogen bonding and van der Waals interactions between FAD and amino acid residues in the FAD binding site of the reductase serve to regulate both flavin binding and reactivity. The precise orientation of key residues (Arg(454), Tyr(456), Cys(472), Gly(488), Thr(491), and Trp(677)) has been defined by x-ray crystallography (Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411-8416). The current study examines the relative contributions of these residues to FAD binding and catalysis by site-directed mutagenesis and kinetic analysis. Mutation of either Tyr(456), which makes van der Waals contact with the FAD isoalloxazine ring and also hydrogen-bonds to the ribityl 4'-hydroxyl, or Arg(454), which bonds to the FAD pyrophosphate, decreases the affinity for FAD 8000- and 25,000-fold, respectively, with corresponding decreases in cytochrome c reductase activity. In contrast, substitution of Thr(491), which also interacts with the pyrophosphate grouping, had a relatively modest effect on both FAD binding (100-fold decrease) and catalytic activity (2-fold decrease), while the G488L mutant exhibited, respectively, 800- and 50-fold decreases in FAD binding and catalytic activity. Enzymic activity of each of these mutants could be restored by addition of FAD. Kinetic properties and the FMN content of these mutants were not affected by these substitutions, with the exception of a 3-fold increase in Y456S K(m)(cyt )(c) and a 70% decrease in R454E FMN content, suggesting that the FMN- and FAD-binding domains are largely, but not completely, independent. Even though Trp(677) is stacked against the re-face of FAD, suggesting an important role in FAD binding, deletion of both Trp(677) and the carboxyl-terminal Ser(678) decreased catalytic activity 50-fold without affecting FAD content.  相似文献   

13.
Carboxyl groups of NADPH-cytochrome P-450 reductase have been modified with the water-soluble carbodiimide EDC. Although there is no significant loss in DCPIP reduction the activity with cytochrome c and cytochrome P-450 LM2 as electron acceptors was inhibited by about 60 and 85%, respectively (1 h incubation time, 20 mM EDC). The inactivation by EDC was nearly completely prevented in the presence of cytochrome P-450 LM2, but not by bovine serum albumin. These results and crosslinking studies suggest that carboxyl groups of NADPH-cytochrome P-450 reductase are involved in charge-pair interactions to cytochrome c and to at least two amino groups of cytochrome P-450 LM2.  相似文献   

14.
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp(147) and Arg(514) in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP(+) revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ~20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP(+) shows movement of the Gly(631)-Asn(635) loop. In the NADP(+)-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP(+) shows movement of the Gly(631)-Asn(635) loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly(631)-Asn(635) loop movement controls NADPH binding and NADP(+) release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.  相似文献   

15.
NADPH-cytochrome P-450 reductase, purified from bovine adrenocortical microsomes, was shown to bind in two different modes to liposomal membranes composed of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. As demonstrated by Ficoll density gradient centrifugation and HPLC gel filtration, the cholate dialysis method made the reductase bind tightly to the liposomal membranes, while the incubation with the preformed vesicles made the reductase bind loosely to the membranes. From the experiments of electron transfer to P-450C21 residing at the other vesicles, the loosely bound reductase was found to be transferable between the vesicles, whereas the tightly bound reductase was not readily transferred. The rates of the binding and the release of the loosely bound reductase to and from the membranes were measured with the stopped-flow method by observing the reduction of P-450C21 embedded in the vesicles. These kinetic studies showed that the rate-limiting step of the reductase transfer between the vesicles was the release of the reductase from the membranes. The reductase in both binding modes well supported the steroid 21-hydroxylase activity.  相似文献   

16.
The reactions of NADPH- or dithionite-dependent reduction of cytochrome P-450 were studied using a stopped flow technique. It was found that the kinetic curves for both reactions may be fitted by a sum of the two exponents. The arrhenius plots for the fast phase rate constants are linear for both reactions. On the contrary, the breaks on the corresponding plots for the slow phase rate constants are observed at 22 and 33 degrees C for cytochrome P-450 reduction by dithionite and at 31 degrees C for NADPH-dependent reduction of cytochrome P-450. The coincidence of the values of the rate constants and activation energy (56 +/- 5 kJ/mol) for the fast phase of NADPH-dependent reduction of cytochrome P-450 with values of catalytic constants and activation energy for demethylation of tertiary amines suggests that the first electron transfer process from NADPH-cytochrome P-450 reductase to cytochrome P-450 may be the rate-limiting step. A diverse character of the kinetic parameters for the two cytochrome P-450 reduction reactions is indicative of different nature of biphasity of these processes.  相似文献   

17.
T D Porter  C B Kasper 《Biochemistry》1986,25(7):1682-1687
The FMN-binding domain of NADPH-cytochrome P-450 oxidoreductase, residues 77-228, is homologous with bacterial flavodoxins, while the FAD-binding domain, residues 267-678, shows a high degree of similarity to two FAD-containing proteins, ferredoxin-NADP+ reductase and NADH-cytochrome b5 reductase. Comparison of these proteins to glutathione reductase, a flavoprotein whose three-dimensional structure is known, has permitted tentative identification of FAD- and cofactor-binding residues in these proteins. The remarkable conservation of sequence between NADPH-cytochrome P-450 oxidoreductase and ferredoxin-NADP+ reductase, coupled with the homology of the FMN-binding domain of the oxidoreductase with the bacterial flavodoxins, implies that NADPH-cytochrome P-450 oxidoreductase arose as a result of fusion of the ancestral genes for these two functionally linked flavoproteins.  相似文献   

18.
Point mutations of p21 proteins were constructed by oligonucleotide-directed mutagenesis of the v-rasH oncogene, which substituted amino acid residues within the nucleotide-binding consensus sequence, GXG GXGK. When the glycine residue at position 10, 13, or 15 was substituted with valine, the viral rasH product p21 lost its GTP-binding and autokinase activities. Other substitutions at position 33, 51, or 59 did not impair its binding activity. G418-resistant NIH 3T3 cell lines were derived by transfection with constructs obtained by inserting the mutant proviral DNA into the pSV2neo plasmid. Clones with a valine mutation at position 13 or 15 were incapable of transforming cells, while all other mutants with GTP-binding activity were competent. A mutant with a substitution of valine for glycine at position 10 which had lost its ability to bind GTP and its autokinase activity was fully capable of transforming NIH 3T3 cells. These cells grew in soft agar and rapidly formed tumors in nude mice. The p21 of cell lines derived from tumor explants still lacked the autokinase activity. These findings suggest that the glycine-rich consensus sequence is important in controlling p21 activities and that certain mutations may confer to p21 its active conformation without participation of ligand binding.  相似文献   

19.
The conversion of androgens to estrogens is catalyzed by an enzyme complex named aromatase, which consists of a form of cytochrome P-450, aromatase cytochrome P-450 (cytochrome P-450AROM), and the flavoprotein, NADPH-cytochrome P-450 reductase. As a first step toward investigation of the structure-function relationships of cytochrome P-450AROM, we have used computer modeling to align the amino acid sequence of cytochrome P-450AROM with that of cytochrome P-450CAM from Pseudomonas putida and thus create a substrate pocket using the heme-binding region and the I-helix of cytochrome P-450CAM as the template. Site-directed mutagenesis was then carried out at two sites: one at a region that aligns with the bend in the I-helix of cytochrome P-450CAM and the other at a glutamate (Glu302) just N-terminal of this bend, which is predicted to be in close proximity to the C2-position of the androstenedione substrate. To determine the importance of the former region, three mutants were constructed: A307G (Ala307----Gly), P308V (Pro308----Val), and GAGV, which changed -Ile305-Ala306-Ala307-Pro308- to -Gly-Ala-Gly-Val- (the corresponding sequence found in 17 alpha-hydroxylase cytochrome P-450). When these proteins were expressed in COS-1 cells, it was found that the activity of P308V was approximately one-third that of the wild type. These observations are consistent with the concept that Pro308 causes a bend in the I-helix of cytochrome P-450AROM, similar to that observed in cytochrome P-450CAM, which is believed to be important in forming the substrate-binding pocket. The next set of mutants were designed to determine the importance of Glu302 in catalysis. Four mutants were prepared in which Glu302 was changed either to Ala, Val, Gln, or Asp, and the activities of the expressed proteins were examined. It was found that mutations in which the carboxylic acid was replaced were essentially devoid of activity. On the other hand, changing Glu302 to Asp resulted in a two-thirds reduction in the apparent Vmax. These results support the role of a carboxylic acid residue at position 302 in the catalytic activity of cytochrome P-450AROM.  相似文献   

20.
A cDNA containing the complete coding nucleotide sequence for rat liver NADPH-cytochrome P-450 oxidoreductase was constructed from two overlapping cDNA clones. This full-length cDNA was inserted into the plasmid expression vector pCQV2, transfected into Escherichia coli, and expressed reductase was identified in cell lysates by electrophoresis followed by electrophoretic transfer to nitrocellulose and immunodetection. Various strains were screened for maximal expression and minimal intracellular degradation of the expressed protein, and strain C-1A was selected for preparation of the expressed enzyme. Induced cells from 12-liter cultures were pelleted, lysed in a French press, and the 50,000g supernate was fractionated by DEAE-cellulose and 2′5′-ADP agarose chromatography. Thirty-five grams of packed cells yielded approximately 2 mg of affinity-purified protein that was essentially free of E. coli proteins. The final preparation exhibited considerable proteolytic degradation and only an estimated 5–10% of the immunoreactive protein was undegraded. Four principal forms could be distinguished upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with molecular weights of 65,000, 66,000, 74,000, and 78,000, the latter being equivalent to that of intact reductase. High-performance liquid chromatography with a Spherogel-DEAE column resolved these forms but resulted in the loss of the 78-kDa form; three peaks eluted with molecular weights of 65,000. Several of the HPLC fractions exhibited cytochrome c reductase activity, indicating correct incorporation of both flavin prosthetic groups, with the 66-kDa form showing the highest specific activity (44 μmol of cytochrome c reduced/mg reductase/min at 22 °C). HPLC assay of flavin content demonstrated equimolar FMN and FAD concentrations, and spectrophotometric analysis of the 66-kDa form revealed a spectrum essentially identical to that of reductase purified from rat liver. When the affinity-purified preparation was reconstituted with cytochrome P-450c, rates of benzo[a]pyrene metabolism approaching rates observed with liver reductase were obtained, indicating that the undegraded component in the affinity-purified preparation was able to interact with cytochrome P-450 and catalyze electron transfer from NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号