首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory characters of three east African haplochromine cichlid species that differ in their use of hypoxic wetlands were examined to consider the potential of dissolved oxygen as one factor affecting habitat use. All three species had a large gill surface area, ranging from the 67th ( Pseudocrenilabrus multicolor victoriae ) to 98th ( Astatotilapia velifer ) percentile of the known gill size range for freshwater fishes. Pseudocrenilabrus multicolor victoriae was the most tolerant to hypoxia exhibiting the lowest aquatic surface respiration ( Rs )thresholds and lowest critical oxygen tension of the three species. Astatotilapia velifer had the highest ASR thresholds, gill ventilation rates, and level of surface activity of the three species, indicating a relatively low tolerance to hypoxia. Prognathochromis venator was intermediate in its response to hypoxia. These findings are discussed in light of survivorship and distribution patterns of these species following Nile perch introduction into Lake Nabugabo.  相似文献   

2.
When exposed to severely hypoxic water, many teleosts skim the better oxygenated surface layer (aquatic surface respiration, ASR). Information is scarce concerning the thresholds triggering ASR and its cardio-respiratory consequences. To assess the ambient conditions leading to ASR and to evaluate its effects on cardio-respiratory function, we exposed specimens of Piaractus mesopotamicus to gradual hypoxia (water oxygen tension ranging from 120 to 10 torr) with or, alternatively, without access to the surface. Concurrently, ASR, cardiac and respiratory frequencies, O2 uptake and gill ventilation were monitored. With surface access, ASR developed below the critical tension for O2 uptake (34 torr) by normal gill ventilation. Moreover, the time spent in ASR increased with prolonged hypoxic exposure to a maximum of 95% of total time. Without surface access, the species exhibited hypoxic bradycardia, that had not occurred in the group with fully developed ASR. Even without ASR, P. mesopotamicus recovered readily from hypoxic exposure, showing that this species possesses a number of mechanisms to cope with environmental hypoxia.  相似文献   

3.
This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg ( c. 1·0 mg l−1) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus , except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.  相似文献   

4.
Synopsis Use of the surface water for aquatic respiration (aquatic surface respiration, ASR) is one of the few alternatives to aerial respiration which allow fish to survive extreme hypoxia, yet it has received very little attention. This report examines three generalizations concerning ASR on a phylogenetically and geographically diverse range of tropical freshwater fishes. It demonstrates that ASR greatly enhances survival in hypoxic water, even in fish not morphologically specialized to use the surface film, that ASR is initiated at a distinct threshold oxygen concentration, with time spent at the surface increasing rapidly as O2 declines, and that with extreme deoxygenation fish perform ASR over 90% of the time. Ninety-four percent of the 31 species of non-air breathing fish tested showed ASR., with the threshold oxygen concentration ranging from 6 to 40 torr.Present address correspondence and reprint requests to D.L. Kramer.  相似文献   

5.
In Lake Nabugabo, Uganda, a satellite of Lake Victoria, approximately 50% of the indigenous fishes disappeared from the open waters subsequent to the establishment of the introduced predatory Nile perch, Lates niloticus. This pattern is similar to the faunal loss experienced in the much larger Lake Victoria. Several of these species persisted in wetland refugia (e.g. ecotonal wetlands, swamp lagoons); however, deep swamp refugia (habitats lying well within the dense interior of fringing wetlands), are available only to a subset of the basin fauna with extreme tolerance to hypoxia. Although air-breathers are common in deep swamp refugia; we also documented a surprisingly high richness and abundance of non-air-breathing fishes. We describe several mechanisms that may facilitate survival in deep swamp refugia including high hemoglobin concentration, high hematocrit, large gill surface area and a low critical oxygen tension (P(c)). In addition, swamp-dwelling fishes showed lower PO(2) thresholds for onset of aquatic surface respiration than the lake-dwelling fishes. This suggests higher tolerance to hypoxia in the swamp fishes because they are able to withstand a lower oxygen tension before approaching the surface. We suggest that physiological refugia may be important in modulating the impact of Nile perch and indigenous fishes in the Lake Nabugabo region; this highlights the need to evaluate relative tolerance of introduced predators and indigenous prey to environmental stressors.  相似文献   

6.
1. Hypoxic conditions occur frequently during hot, dry summers in the small lentic waterbodies (billabongs) that occur on the floodplains of the Murray‐Darling River system of Australia. Behavioural responses to progressive hypoxia were examined for the native and introduced floodplain fish of the Ovens River, an unregulated tributary of the Murray River in south‐east Australia. 2. Given the high frequency of hypoxic episodes in billabongs on the Ovens River floodplain, it was hypothesised that all species would exhibit behaviours that would confer a degree of hypoxia‐tolerance. Specifically, it was hypothesised that as hypoxia progressed, gill ventilation rates (GVRs) would increase and aquatic surface respiration (ASR) would become increasingly frequent. Fish were subjected to rapid, progressive hypoxia from normoxia to anoxia in open tanks. 3. All tested species exhibited behaviours consistent with their use of potentially hypoxic habitats. As hypoxia progressed, GVRs increased and all species, with the exception of oriental weatherloach, began to switch increasingly to ASR with 90% of individuals using ASR at various oxygen concentrations below 1.0 mg O2 L−1. Australian smelt, redfin perch and flat‐headed galaxias were the first three species to rise to ASR, with 10% of individuals using ASR by 2.55, 2.29 and 2.21 mg O2 L−1 respectively. Goldfish and common carp were the last two species to rise to ASR, with 10% of individuals using ASR by 0.84 and 0.75 mg O2 L−1 respectively. In contrast to other species, oriental weatherloach largely ceased gill ventilation and used air‐gulping as their primary means of respiration during severe hypoxia and anoxia. 4. Australian smelt, redfin perch and flat‐headed galaxias were unable to maintain ASR under severe hypoxia, and began exhibiting erratic movements, termed terminal avoidance behaviour, and loss of equilibrium. All other species continued to use ASR through severe hypoxia and into anoxia. Following a rise to ASR, GVRs either remained steady or decreased slightly indicating partial or significant relief from hypoxic stress for these hypoxia‐tolerant species. 5. Behavioural responses to progressive hypoxia amongst the fish species of the Ovens River floodplain indicate a generally high level of tolerance to periodic hypoxia. However, species‐specific variation in hypoxia‐tolerance may have implications for community structure of billabong fish communities following hypoxic events.  相似文献   

7.
The ability to develop reversible dermal extensions on the lower jaw in some South American characiform fishes has been proposed as a way to optimize the performance of aquatic surface respiration (ASR) during hypoxic conditions. These structures are formed by edema of the hypodermal tissues and can develop in a large proportion of individuals inhabiting a lake within a few hours following daily changes in dissolved oxygen. Our study report the development of dermal lip protuberances in eleven species of characiform fishes associated with periods of strong environmental hypoxia in floodplain lakes of Salado River, Argentina. Protuberances occurred in different basic forms in fishes with divergent head morphology (genera Astyanax, Ctenobrycon, Aphyocharax, Brycon, Mylossoma, Triportheus, Oligosarcus and Acestrorhynchus). The discovery of dermal projections on the anterior border of maxillary bone extends the known range of structures affected by lip protuberances. Dermal structures began to develop simultaneously in both jaws below dissolved oxygen (DO) concentrations of 1.20–1.75 mgl−1 and rose in a steep manner as oxygen level decreased. The degree of morphological plasticity differed among traits and species. The shape of response of morphology to DO was similar to that previously reported on ASR, providing additional evidence about the functional link between these traits. Our results suggests that dermal lip protuberances are widely spread among characiform fishes, affecting several mouth structures. The different types of protuberances would make up for the limitations imposed by body size and mouth shape and position on the performance of ASR in fishes with divergent morphology.  相似文献   

8.
This study quantifies the behavioral response of the widespread mouth brooding African cichlid Pseudocrenilabrus multicolor victoriae to progressive hypoxia. We exposed four gender/stage classes of P. multicolor (males, brooding females, females that had just released young, and non-brooding females) to progressive hypoxia and recorded the percent time spent using aquatic surface respiration (surface skimming, ASR) and gill ventilation rates. This was done for fish collected from three sites in Uganda (lake, swamp, and river) after long-term acclimation to normoxia. There was no effect of site of origin on response to hypoxia, but ASR thresholds did differ between gender/stage classes. The oxygen level (threshold) at which spent 10, 50, and 90% of their time at the surface using ASR was much higher for brooding females than for males, whereas ASR thresholds did not differ between non-brooding females and males. Similarly, the level at which ASR was initiated was much higher in brooding females than males, but did not differ between males and non-brooders, or between males and females than had just released young. The rate of gill ventilation dropped significantly in males and all stages of females after initiation of ASR, suggesting that surface skimming increases efficiency of oxygen acquisition. These results suggest that mouth brooding in female P. multicolor ASR improves oxygen uptake but imposes a cost in terms of time spent at the water surface, and this may affect maternal predation risk in low-oxygen habitats.  相似文献   

9.
Many estuarine habitats are characterized by episodes of hypoxia, the frequency and severity of which may vary seasonally. Accordingly, resident fish species may show seasonal differences in their capacity to tolerate hypoxia. We have tested this hypothesis in the gulf killifish, Fundulus grandis, sampled from the Lake Pontchartrain estuary (Louisiana) at different times of the year. We measured 2 indicators of hypoxia tolerance, the frequency of aquatic surface respiration (ASR) during gradual reduction in dissolved oxygen (D.O.) and survival time during severe hypoxic stress, and found both to be significantly affected by season. Fish collected during the summer did not engage in ASR until the D.O. concentration dropped to values lower than that required to elicit ASR by fish collected during other seasons. Laboratory acclimation of fish to low oxygen did not change the relationship between ASR behavior and D.O., suggesting that the observed seasonal effect on ASR was not simply due to previous exposure of summer fish to environmental hypoxia. Furthermore, fish collected during the summer and winter had significantly longer survival times during exposure to severe hypoxia than fish collected during the fall. Survival analysis indicated that the condition of fish was positively associated with survival time, and seasonal variation in condition accounted for about half of the observed difference between survival times of fish collected during the summer and fall. Seasonal variation in ASR and survival, when taken together, demonstrate that hypoxia tolerance in F. grandis may be subject to acclimatization. An increase in hypoxia tolerance during the summer could increase survivorship of fish when exposed to elevated temperatures and low oxygen concentrations which prevail during the summer months.  相似文献   

10.
In this study, we explored how environmental oxygen levels affect the metabolic phenotype of sympatric sunfish known to differ in their hypoxia tolerance. We examined bluegill (Lepomis macrochirus) and pumpkinseed (Lepomis gibbosus), two species commonly found in the same water bodies, though pumpkinseed are considered more hypoxia tolerant, and survive in hypoxic lakes that exclude bluegill. Freshly caught Lake Opinicon pumpkinseed possessed significantly higher glycolytic enzyme activities (PGI, ALD, GAPDH, ENO, and LDH) than bluegill, but after holding the fish in an oxygenated environment for 7days, pumpkinseed glycolytic enzymes (PGI, ALD, and LDH) and mRNA (LDHA and HIF1α) declined to bluegill's levels. When glycolytic enzymes and mRNA were compared in pumpkinseed populations from seven lakes, only Penyck Lake pumpkinseed had significantly elevated glycolytic enzyme activity that did not diminish with normoxic holding. The levels of mRNA for LDHA and HIF1α did not differ between lakes and did not change in response to normoxic holding in the Penyck Lake fish. Collectively, these studies on sunfish show that hypoxia tolerance contributes to ecological niche specialization between species, and provides an example of a population that has adapted chronically elevated glycolytic enzyme activity independent of current dissolved oxygen in the water.  相似文献   

11.
The potential influence of social familiarity in shoal‐choice decisions was investigated in two sympatric species of north temperate fishes, juvenile banded killifish Fundulus diaphanus and juvenile bluegill sunfish Lepomis macrochirus. Groups of socially familiar and unfamiliar conspecifics were formed in the laboratory using wild‐caught fishes. Juvenile F. diaphanus demonstrated a strong preference for familiar conspecific shoalmates, whereas juvenile L. macrochirus exhibited no preference for either unfamiliar or familiar conspecific shoalmates. The differential influence of familiarity on shoalmate choice in juveniles of these two species could be due to their different ecologies, local population densities and life histories.  相似文献   

12.
Eustrongylides ignotus is a parasitic nematode whose definitive hosts are often piscivorous wading birds (Ciconiiformes). Several species of small fishes are intermediate hosts, while larger predatory fish may be paratenic (transport) hosts. We examined predation susceptibility of infected mosquitofish (Gambusia holbrooki) to three species of predatory fishes, including juvenile largemouth bass (Micropterus salminoides), warmouth (Lepomis gulosus), and bluegill (Lepomis macrochirus). A 250 L aquarium with removable plexiglass divider and remote observation windows was constructed. Aquatic macrophytes were placed in the tank to provide refuge for the fishes. Predatory fish were allowed to acclimate to one half of the tank, while one infected and one uninfected mosquitofish were placed in the other. The divider was removed and an observer recorded the number of capture attempts and time required for capture. Predators were observed for behavioral alterations for 4 days after ingestion of infected mosquitofish, then examined at necropsy. Infected prey were selected preferentially in 31 of 38 (82%) trials. The number of capture attempts was 2.7+/-0.2 (x +/- SE) for infected fish and 3.9+/-0.4 for uninfected fish. Mean time of capture was 12.4+/-1.6 min for infected fish and 21.7+/-2.9 for uninfected fish. Because of these differences, infected mosquitofish were more susceptible to predation (P < 0.01) than uninfected fish. Aberrant behavior including lethargy, convulsions, and buoyancy abnormalities was observed in eight (67%) predatory fish. At necropsy, larvae of E. ignotus were found in the coelomic cavity, viscera, and swim bladders of predators. Parasite-induced behavior modification of intermediate hosts may predispose them to predation by wading birds and thereby facilitate the transmission of this nematode in natural populations.  相似文献   

13.
The diet of the Iberian otter (Lutra lutra) was determined by analysing 547 spraints collected at 28 sites within a wide area invaded by centrarchid fishes (pumpkinseed sunfish, Lepomis gibbosus and largemouth bass, Micropterus salmoides): the middle Guadiana basin (South-west Iberian Peninsula). Fish was the otters’ main prey, representing more than 60% of total individuals and more than 80% of total biomass. Otters preyed on most of the fish species captured in the field; however, the consumption of centrarchids was low compared to their abundance in the streams, and Jacobs’ index of preference showed a clear rejection of both species by the otter. Consumption of native fish genera (Squalius, Barbus and Chondrostoma) by otters increased in relation to their increase in the environment. In contrast, increasing numbers of L. gibbosus in the field was not reflected in otter consumption. The general decline of native freshwater fishes in Iberian rivers, the preferred prey of otters, together with the spread of exotic fish species (centrarchids and others) could put otter populations at risk.  相似文献   

14.
Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef fishes could reflect adaptations to nocturnal hypoxia in tide pools. It may also be needed to enable fishes to reside deep within branching coral at night to avoid predation. Widespread hypoxia tolerance in a habitat with such an extreme biodiversity as coral reefs indicate that there is a wealth of hypoxia related adaptations to be discovered in reef fishes.  相似文献   

15.
Over a fifteen month period, beginning October, 1974, approximately 13 500 centrarchids were examined for evidence of infection with metacercaria of Clinostomum marginatum. Species checked included Lepomis macrochirus, L. gulosus, L. auritus, Pomoxis nigromaculatus and Micropterus salmoides. The study site was Par Pond (South Carolina, U.S.A.), an 1120 ha reservoir receiving thermal effluent from a nuclear production reactor. Except for the largemouth bass, M. salmoides , infection percentages among the five species were less than 1%. Among bass, infection varied seasonally, being highest from January to June. From the spring highs of approximately 25 %, the percentages dropped to lows of < 10% in July and August; there was a jump in September-October to another peak of 30% and then a steady decline through December when infection percentages were again less than 10%. Neither body condition nor length of the bass were related to infection percentage or metacercaria density. Infection percentage could not be related to the influence of thermal effluent. Infection percentages did vary from location to location within the Par Pond system. A significant rank correlation could be established between infection percentage and the amount of littoral zone present in the locality from which the bass were taken. It is suggested that the local 'bay effects' are the result of limited home and foraging ranges of the bass in relation to the amounts of littoral zone present in various locations of the reservoir.  相似文献   

16.
A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m(2) of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0· 05 to 0· 15 m s(-1) for small poeciliids and fundulids to 0· 1 to 1· 8 m s(-1) for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.  相似文献   

17.
Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2/L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti‐predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.  相似文献   

18.
Many small, isolated north temperate waterbodies experience hypoxic conditions and winterkill events. Although such waterbodies are found in the natural ranges of two congeneric sunfishes (pumpkinseed, Lepomis gibbosus and bluegill, L. macrochirus), many contain pumpkinseed but no bluegill; a biogeographic pattern that has remained unexplained. To test whether a greater hypoxia tolerance in pumpkinseeds could explain these differences in distribution, we conducted hypoxia tolerance trials by subjecting each species to declining oxygen concentrations over ca. 16 h in aquaria. We also measured the activities of key metabolic enzymes in the muscle of wild individuals. Pumpkinseeds showed significantly higher tolerance to hypoxic stress than bluegills, as indicated by dissolved oxygen concentration at the time of equilibrium loss. Consistent with this result, white muscle from pumpkinseed had higher levels of lactate dehydrogenase, a marker enzyme for anaerobic capacity. There was no difference between species in the activity level of pyruvate kinase, suggesting that pumpkinseed do not display a general upregulation of glycolysis, but rather an upregulation of anaerobic capacity. Our results support the hypothesis that evolved differences in winter hypoxia tolerance can act as a macrohabitat partitioning mechanism in North American sunfishes.  相似文献   

19.
Differences in hypoxia tolerance among three native and three alien bitterling species were examined by means of field surveys and aquarium experiments. I caught fish in minnow traps and measured environmental factors such as dissolved oxygen and current velocity once a month between June and November 2006 at 30 points around Lake Kasumigaura, Japan. In addition, aquarium experiments were carried out to compare aquatic surface respiration thresholds among the bitterling species. Much more individuals of an alien species, Rhodeus ocellatus ocellatus, was caught at the least oxygen range than expected in the field, and showed the highest hypoxia tolerance in the laboratory experiments. Another alien bitterling, Acheilognathus rhombeus, also showed higher hypoxia tolerance than the three native bitterling species. Lake Kasumigaura is well known for eutrophication and water masses with low dissolved oxygen have often been observed there. Differences in hypoxia tolerance among bitterling species might have affected bitterling assemblage structure in Lake Kasumigaura, which is currently characterized by the dominance of R. o. ocellatus.  相似文献   

20.
Synopsis Because of the need for surface access for aquatic surface respiration (ASR), fish density increases were demonstrated for the open water of a floodplain lake during severe hypoxia. This indicates an O2-induced diurnal pattern of horizontal migrations between the zone of macrophyte cover and open water. Supplemental experimental investigations seem to suggest that species such as characoids,Colossoma macropomum andSchizodon fasciatum, deviate from this pattern. During long periods of oxygen depletion, they return to the region of macrophyte growth and survive there without displaying the usual kind of ASR. Mortality studies in net cages exposed in natural water bodies confirmed that only these two species are able to survive severe hypoxia beneath macrophyte cover. The possibility of an O2-input through the root system of plants is discussed. The O2-concentration has a significant influence on the locomotory behavior and the frequency of opercular movement in characoids. There is significantly less locomotory activity beneath the macrophytes during periods of oxygen depletion among those species not forced to migrate than among those in the open water regions, where normal ASR behavior is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号