共查询到20条相似文献,搜索用时 15 毫秒
1.
The repression of beta-isopropylmalate dehydrogenase, the LEU2 gene product, by leucine and leucine plus threonine was unaffected by the transposition of LEU2 from its original locus on chromosome III to a new locus within the ribosomal deoxyribonucleic acid gene cluster on chromosome XII. Since the expression of the LEU2 gene is probably controlled at a pretranslational level, we conclude that the recombinant plasmid used for transformation carries regulatory information in addition to LEU2 structural information. 相似文献
2.
3.
H H de Andrade E K Marques A C Schenberg J A Henriques 《Molecular & general genetics : MGG》1989,217(2-3):419-426
Summary The induction of mitotic gene conversion and crossing-over inSaccharomyces cerevisiae diploid cells homozygous for thepso4-1 mutation was examined in comparison to the corresponding wild-type strain. Thepso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional
psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary
and exponential phases of growth. Concerning the lethal effect, diploids homozygous for thepso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase
of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of
thePSO4 gene. On the other hand, thepso4-1 mutant is mutationally defective for all agents used. Therefore, thepso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that thePSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy
between thepso4-1 mutation and theRecA orLexA mutation ofEscherichia coli. 相似文献
4.
The 2 mu DNA plasmid is often eliminated from yeast cells when they are transformed with the 2 mu DNA-LEU2-pMB9 composite plasmid pJDB219. Since pJDB219 is subsequently lost with high frequency, derivatives lacking all 2 mu DNA can be prepared from any strain. 相似文献
5.
6.
J. Grant Burgess Hiroaki Sudo Koji Sode Dr. Tadashi Matsunaga 《Current microbiology》1993,26(2):105-108
The replication region of pRD31, a 3.1-kb endogenous plasmid from a marineRhodobacter species, has recently been localized and sequenced. We report here incorporation of this replicon into a narrow-host-range mobilizable pBR325 derivative. This has allowed us to establish an efficient conjugative gene transfer system for a hydrogen-producing marine species ofRhodobacter that is unable to grow aerobically. Efficient transfer was obtained (1.2×10–3 transconjugants per recipient cell), and hybrid plasmids replicated with a high copy number (>10) and good stability. Southern hybridization analysis indicated that the new vectors, pRDP203 and pRDP203s, were maintained in marineRhodobacter sp. NKPB0021 as autonomous replicons without detrimental structural rearrangements, confirming their suitability for use as shuttle vectors. 相似文献
7.
8.
9.
Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae 总被引:19,自引:0,他引:19
下载免费PDF全文

The copy number and stability of artificial 2-micron circle-based plasmids have been accurately measured in [Cir+] and [Cir0] strains of Saccharomyces cerevisiae. We conclude that (i) instability and copy number vary greatly from plasmid to plasmid; (ii) instability and copy number are negatively correlated--that is, high copy number is associated with low instability; (iii) it is difficult to reconcile this variability with a strict and direct system of copy number control; (iv) instabilities are much higher than expected from random partition and the observed copy numbers: this may imply partition which is less efficient than random. Even so, (v) the partitioning of 2-micron circle-like plasmids is more efficient than that of ARS-based plasmids, which hints at the existence of a system for the (inefficient) distribution of 2-micron circles. 相似文献
10.
Identification and characterization of a second copy number control gene in mini-F plasmids 总被引:9,自引:0,他引:9
Summary We previously reported the existence of a series of chemically induced trans recessive copy-number mutations (cop) for mini-F plasmids and the existence of a similar series of cop mutations induced by insertion of the ampicillin resistance transposon Tn3. In this paper we describe the experiments showing that these two series of mutations are in different genes. Briefly, the experiments show that the one mutant series can complement the other, that the mutations map in distinct but adjacent regions, that the copy numbers of double mutants are the products of the copy numbers determined by the single mutations, and that Tn3 does not elevate copy number by a polar effect on the adjacent cop gene defined by chemical mutagenesis. We term the latter gene copA and the gene mutated by Tn3, copB. We also demonstrate here that copB mutations are recessive to the wild type allele. Further, we have characterized copB by deletion and recombinational analysis as the series of five 19- to 22-base-pair directly repeated sequences that had previously been designated incC-that is, one of the incompatibility genes. The evidence for this conclusion is that plasmids lacking two, three or five direct repeats have their copy number elevated proportionately. Possible mechanisms for copB control of replication are discussed. 相似文献
11.
The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. 总被引:16,自引:5,他引:16
下载免费PDF全文

The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes. 相似文献
12.
13.
Amit Banerjee Peter C. Weber Sunil Palchaudhuri 《Molecular & general genetics : MGG》1990,220(2):320-324
Summary We have isolated a deletion mutation and a point mutation in the copB gene of the replication region Repl of the IncFI plasmid Co1V2-K94. Subsequently, this copB gene with and without point mutation was cloned and sequenced, and the point mutation was mapped in the coding region of copB with a change of one amino acid from arginine to serine. Furthermore, this copB mutant had an approximately 10-fold increase in copy number. The CopB-phenotype of Co1V2-K94 could be complemented in trans by the copB gene of coresident IncFII plasmids such as R1 and R538, but not R100, suggesting that ColV2-K94 and R1 or R538 contain the same copB allele. 相似文献
14.
Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number. 总被引:6,自引:2,他引:6
下载免费PDF全文

Microtubule organization in the cytoplasm is in part a function of the number and length of the assembled polymers. The intracellular concentration of tubulin could specify those parameters. Saccharomyces cerevisiae strains constructed with moderately decreased or increased copy numbers of tubulin genes provide an opportunity to study the cellular response to a steady-state change in tubulin concentration. We found no evidence of a mechanism for adjusting tubulin concentrations upward from a deficit, nor did we find a need for such a mechanism: cells with no more than 50% of the wild-type tubulin level were normal with respect to a series of microtubule-dependent properties. Strains with increased copies of both alpha- and beta-tubulin genes, or of alpha-tubulin genes alone, apparently did down regulate their tubulin levels. As a result, they contained greater than normal concentrations of tubulin but much less than predicted from the increase in gene number. Some of this down regulation occurred at the level of protein. These strains were also phenotypically normal. Cells could contain excess alpha-tubulin protein without detectable consequences, but perturbations resulting in excess beta-tubulin genes may have affected microtubule-dependent functions. All of the observed regulation of levels of tubulin can be explained as a response to toxicity associated with excess tubulin proteins, especially if beta-tubulin is much more toxic than alpha-tubulin. 相似文献
15.
A single nucleotide polymorphism in the DNA polymerase gamma gene of Saccharomyces cerevisiae laboratory strains is responsible for increased mitochondrial DNA mutability 总被引:1,自引:0,他引:1
下载免费PDF全文

In the Saccharomyces cerevisiae strains used for genome sequencing and functional analysis, the mitochondrial DNA replicase Mip1p contains a single nucleotide polymorphism changing the strictly conserved threonine 661 to alanine. This substitution is responsible for the increased rate of mitochondrial DNA point mutations and deletions in these strains. 相似文献
16.
The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. 总被引:4,自引:1,他引:4
下载免费PDF全文

Eleven cobalt-tolerant mutants were found to belong to a single complementation group, cot2. In addition to cobalt, the cot2 mutants were found to tolerate increased levels of the divalent cations Zn2+, Mn2+, and Ni2+ as well. All of the cot2 mutants exhibited a wiener-shaped cellular morphology that was exacerbated by the carbon and nitrogen source but was unaffected by metals. The rate of glucose-dependent transport of cobalt into cells was reduced in strains that carry mutations in the COT2 gene. COT2 is not essential for growth. Strains that carry a COT2 allele conferring complete loss of function are viable and exhibit phenotypes similar to those of spontaneous cot2 mutations. The sequence of the COT2 gene shows that it is identical to GRR1, which encodes a protein required for glucose repression. The glucose dependence of the transport defect implies that cot2 mutations affect the link between glucose metabolism and divalent cation active transport. 相似文献
17.
The gene encoding a major exopolyphosphatase (scPPX1) in Saccharomyces cerevisiae (H. Wurst and A. Kornberg, J. Biol. Chem. 269:10996-11001, 1994) has been isolated from a genomic library. The gene, located at 57 kbp from the end of the right arm of chromosome VIII, encodes a protein of 396 amino acids. Overexpression in Escherichia coli allowed the ready purification of a recombinant form of the enzyme. Disruption of the gene did not affect the growth rate of S. cerevisiae. Lysates from the mutants displayed considerably lower exopolyphosphatase activity than the wild type. The enzyme is located in the cytosol, whereas the vast accumulation of polyphosphate (polyP) of the yeast is in the vacuole. Disruption of PPX1 in strains with and without deficiencies in vacuolar proteases allowed the identification of exopolyphosphatase activity in the vacuole. This residual activity was strongly reduced in the absence of vacuolar proteases, indicating a dependence on proteolytic activation. A 50-fold-lower protease-independent activity could be distinguished from this protease-dependent activity by different patterns of expression during growth and activation by arginine. With regard to the levels of polyP in various mutants, those deficient in vacuolar ATPase retain less than 1% of the cellular polyP, a loss that is not offset by additional mutations that eliminate the cytosolic exopolyphosphatase and the vacuolar polyphosphatases dependent on vacuolar protease processing. 相似文献
18.
Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. 总被引:21,自引:13,他引:21
下载免费PDF全文

An autonomously replicating segment, ARS, is located 293 base pairs downstream from the histone H4 gene at the copy-I H3-H4 locus. The sequences needed for autonomous replication were defined by deletion analysis to include an ARS consensus sequence and an additional 3'-flanking region. External deletions into the 3'-flanking yeast sequences resulted in a loss of replication function. However, disruptions of the required 3'-flanking domain by either 10-base-pair linker-scanning substitutions or larger internal deletions did not impair autonomous replication. Thus, replication is dependent upon a flanking chromosome domain, but not an exact DNA sequence. The extent of the yeast sequences required in the 3'-flanking domain is variable depending on the nature of neighboring plasmid vector sequences. That is, there are certain vector sequences that prohibit replication when they are placed too close to the ARS consensus. These results suggest that the functional 3'-flanking domain of the H4 ARS is a specific DNA or chromatin structure or both. 相似文献
19.
Jane Harris Cramer Frances W. Farrelly Joy T. Barnitz Robert H. Rownd 《Molecular & general genetics : MGG》1977,151(3):229-244
Summary Fragments produced by partial digestion of Saccharomyces cerevisiae ribosomal DNA (rDNA) with the restriction endonuclease EcoRI were ligated in vitro to the bacterial plasmid RSF2124. The resulting hybrid plasmids were cloned in Escherichia coli. Three hybrid plasmids which contain at least one intact repetitive unit of the multiple, tandem sequences of the yeast rDNA genes have been further characterized. These plasmids have been used to construct a map of the EcoRI, SmaI, HindII and HindIII restriction sites in the individual repetitive units of yeast rDNA. 相似文献
20.