首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The indoleamine melatonin and the synthetic antiestrogenic drug tamoxifen seem to have similar mechanisms in inhibiting the growth of estrogen receptor positive breast cancer cells. In this study, we compared the ability of these molecules, alone and in combination, in stabilizing microsomal membranes against free radical attack. Hepatic microsomes were obtained from male rats and incubated with or without tamoxifen (50–200 μm), melatonin (1 mm) or both; lipid peroxidation was induced by addition of FeCl3, NADPH and ADP. After oxidative damage, membrane fluidity, measured by fluorescence polarization techniques, decreased whereas malonaldehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations increased. Incubation of the microsomes with tamoxifen prior to exposure to free radical generating processes inhibited, in a dose-dependent manner, the increase in membrane rigidity and the rise in MDA+4-HDA levels. When melatonin was added, the efficacy of tamoxifen in preventing membrane rigidity was enhanced. Thus, the IC50s for preventing membrane rigidity and for inhibiting lipid peroxidation obtained for tamoxifen in the presence of melatonin were lower than those obtained with tamoxifen alone. Moreover, tamoxifen (50–200 μm) in the presence of melatonin reduced basal membrane fluidity and MDA+4-HDA levels in microsomes. These synergistic effects of tamoxifen and melatonin in stabilizing biological membranes may be important in protecting membranes from free radical damage. Received: 7 July 1997/Revised: 12 November 1997  相似文献   

2.
Excessive free iron and the associated oxidative damage are commonly related to carcinogenesis. Among the antioxidants known to protect against iron-induced oxidative abuse and carcinogenesis, melatonin and other indole compounds recently have received considerable attention. Indole-3-propionic acid (IPA), a deamination product of tryptophan, with a structure similar to that of melatonin, is present in biological fluids and is an effective free radical scavenger. The aim of the study was to examine the effect of IPA on experimentally induced oxidative changes in rat hepatic microsomal membranes. Microsomes were preincubated in presence of IPA (10, 3, 2, 1, 0.3, 0.1, 0.01 or 0.001 mM) and, then, incubated with FeCl(3) (0.2 mM), ADP (1.7 mM) and NADPH (0.2 mM) to induce oxidative damage. Alterations in membrane fluidity (the inverse of membrane rigidity) were estimated by fluorescence spectroscopy and lipid peroxidation by measuring concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA). IPA, when used in concentrations of 10, 3 or 2 mM, increased membrane fluidity, although at these concentrations it did not influence lipid peroxidation significantly. The decrease in membrane fluidity due to Fe(3+) was completely prevented by preincubation in the presence of IPA at concentrations of 10, 3, 2 or 1 mM. The enhanced lipid peroxidation due to Fe(3+) was prevented by IPA only at the highest concentration (10 mM). It is concluded that Fe(3+)-induced rigidity and, to a lesser extent, lipid peroxidation in microsomal membranes may be reduced by IPA. However, IPA in high concentrations increase membrane fluidity. Besides melatonin, IPA may be used as a pharmacological agent to protect against iron-induced oxidative damage to membranes and, potentially, against carcinogenesis.  相似文献   

3.
Lipid peroxidation is a degenerative chain reaction in biological membranes that may be initiated by exposure to free radicals. This process is associated with changes in the membrane fluidity and loss of several cell membrane-dependent functions. 5-methoxytryptophol (ML) is an indole isolated from the mammalian pineal gland. The purpose of this study was to investigate the effects of ML (0. 01mM-10mM) on membrane fluidity modulated by lipid peroxidation. Hepatic microsomes obtained from rats were incubated with or without ML (0.01-10 mM). Then lipid peroxidation was induced by FeCl(3), ADP, and NADPH. Membrane fluidity was determined using fluorescence spectroscopy. Malonaldehyde (MDA) +4-hydroxyalkenals (4-HDA) concentrations were estimated as an indicator of the degree of lipid peroxidation. With oxidative stress, membrane fluidity decreased and MDA+4-HDA levels increased. ML (0.01-3 mM) reduced membrane rigidity and the rise in MDA+4-HDA formation in a concentration-dependent manner. 10 mM ML protected against lipid peroxidation but failed to prevent the membrane rigidity. In the absence of oxidative reagents, ML (0.3-10 mM) decreased membrane fluidity whereas MDA+4-HDA levels remained unchanged. This indicates that ML may interact with membrane lipids. The results presented here suggest that ML may be another pineal indoleamine (in addition to melatonin) that resists membrane rigidity due to lipid peroxidation.  相似文献   

4.
The serum concentrations of aluminum, a metal potentially involved in the pathogenesis of Alzheimer's disease, increase with age. Also, intense and prolonged exposure to aluminum may result in dementia. Melatonin and pinoline are two well known antioxidants that efficiently reduce lipid peroxidation due to oxidative stress. Herein, we investigated the effects of melatonin and pinoline in preventing aluminum promotion of lipid peroxidation when the metal was combined with FeCl3 and ascorbic acid in rat synaptosomal membranes. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenal (4-HDA) concentrations in the membrane suspension. Under the experimental conditions used herein, the addition of aluminum (0.0001 to 1 mmol/L) enhanced MDA + 4-HDA formation in the synaptosomes. Melatonin and pinoline reduced, in a concentration-dependent manner, lipid peroxidation due to aluminum, FeCl3 and ascorbic acid in the synaptosomal membranes. These results suggest that the indoleamine melatonin and the beta-carboline pinoline may potentially act as neuroprotectant agents in the therapy of those diseases with elevated aluminum concentrations in the tissues.  相似文献   

5.
The aim of the study was to examine the potential protective effect of melatonin against whole body ionizing radiation (800 cGy). Changes in 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, an index of DNA damage, and alterations in membrane fluidity (the inverse of membrane rigidity) and lipid peroxidation in microsomal membranes, as indices of damage to lipid and protein molecules in membranes, were estimated. Measurements were made in rat liver, 12 h after their exposure to radiation. To test the potential protective effects of melatonin, the indole was injected (i.p. 50 mg/kg b.w.) at 120, 90, 60 and 30 min prior to radiation exposure. Both 8-OH-dG levels and microsomal membrane rigidity increased significantly 12 h after radiation exposure. Melatonin completely counteracted the effects of ionizing radiation. Changes in 8-OH-dG levels and membrane fluidity are early sensitive parameters of DNA and microsomal membrane damage, respectively, induced by ionizing radiation and our findings document the protective effects of melatonin against ionizing radiation.  相似文献   

6.
Delta-aminolevulinic acid, precursor of heme, accumulates in a number of organs, especially in the liver, of patients with acute intermittent porphyria. The potential protective effect of melatonin against oxidative damage to nuclear DNA and microsomal and mitochondrial membranes in rat liver, caused by delta-aminolevulinic acid, was examined. Changes in 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, an index of DNA damage, and alterations in membrane fluidity (the inverse of membrane rigidity) and lipid peroxidation in microsomal and mitochondrial membranes, as indices of damage to lipid and protein molecules in membranes, were estimated. Measurements were made in rat liver after a 2 week treatment with delta-aminolevulinic acid (40 mg/kg b.w., every other day). To test the potential protective effects of melatonin, the indole was injected (i.p. 10 mg/kg b.w.) 3 times daily for 2 weeks. 8-OHdG levels and lipid peroxidation in microsomal membranes increased significantly whereas microsomal and mitochondrial membrane fluidity decreased as a consequence of delta-aminolevulinic acid treatment. Melatonin completely counteracted the effects of delta-aminolevulinic acid. Melatonin was highly effective in protecting against oxidative damage to DNA as well as to microsomal and mitochondrial membranes in rat liver and it may be useful as a cotreatment in patients with acute intermittent porphyria.  相似文献   

7.
The ability of several indoleamines to scavenge free radicals is well documented. Our aim was to evaluate the ability of 0.01–3 mm tryptophan (Trp) and 0.1–5 mm 5-hydroxytryptophan (5-OH-Trp) to protect hepatic cell membranes against 0.1 mm FeCl3 plus 0.1 mm ascorbic acid–induced lipid peroxidation and increases in membrane rigidity. Membrane fluidity was evaluated using fluorescence spectroscopy. Lipid and protein oxidation were estimated by quantifying malondialdehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations and carbonyl group content, respectively. Exposure to FeCl3 plus ascorbic acid increased hepatic cell membrane rigidity, MDA + 4-HDA and carbonyl content. The presence of 5-OH-Trp, but not Trp, attenuated these changes. In the absence of oxidative stress, neither indoleamine modified fluidity, MDA + 4-HDA or carbonylation. These results suggest that C5 hydroxylation determines the ability of Trp to preserve membrane fluidity in the presence of oxidative stress.  相似文献   

8.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

9.
Although the pathogenesis of ischemia reperfusion (IR) injury is based on complex mechanisms, free radicals play a central role. We evaluated membrane fluidity and lipid peroxidation during pancreas transplantation (PT) performed in 12 pigs (six donors and six recipients). Fluidity was measured by fluorescence spectroscopy, and malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations were used as an index of lipid oxidation. Pancreatic tissues were collected as follows: (A) donor, immediately before vascular clamping; (B) graft, following perfusion lavage with University of Wisconsin preservation fluid; (C) graft, after 16?h of cold ischemia; and (D) recipient, 30?min vascular postreperfusion. Fluidity and MDA and 4-HDA concentrations were similar in cases A, B, and C. However, there was significant membrane rigidity and increased lipid peroxidation after reperfusion (D). These findings suggest that reperfusion exaggerates oxidative damage and may account for the rigidity in the membranes of allografts during PT.  相似文献   

10.
Phenylhydrazine and iron overload result in augmented oxidative damage and an increased likelihood of cancer. Melatonin is a well known antioxidant and free radical scavenger. The aim of this study was to determine whether melatonin would protect against phenylhydrazine-induced oxidative damage to cellular membranes and to evaluate the possible role of iron in this process. Changes in lipid peroxidation and microsomal membrane fluidity were estimated after the treatment of rats with phenylhydrazine (15 mg/kg body weight, daily, 7 days) alone and melatonin or ascorbic acid (15 mg/kg body weight, two times daily, 8 days), or their combination. Additionally, lipid peroxidation was measured in liver homogenates from untreated and melatonin or ascorbic acid-treated rats in vivo and exposed to iron in vitro. Melatonin, but not ascorbic acid, reduced phenylhydrazine-induced lipid peroxidation in vivo in spleen (3.16+/-0.06 vs. 3.83+/-0.12 nmol/mg protein, P<0.05) and plasma (7. 73+/-0.52 vs. 9.96+/-0.71 nmol/ml, P<0.05) and attenuated the decrease in hepatic microsomal membrane fluidity (1/polarization, 3. 068+/-0.007 vs. 3.027+/-0.008, P<0.05). In vitro exposure to iron significantly enhanced the lipid peroxidation in liver homogenates from untreated (3.34+/-0.75 vs. 1.25+/-0.28, P<0.05) or ascorbic acid-treated rats (2.72+/-0.39 vs. 0.88+/-0.06, P<0.05) but not from melatonin-treated rats (1.49+/-0.55 vs. 0.68+/-0.20, NS). It is concluded that free radical mechanisms are involved in the toxicity of phenylhydrazine and that the antioxidant melatonin, but not ascorbic acid, reduces the toxic affects of phenylhydrazine in vivo and of iron in vitro in cell membranes. Therefore, melatonin co-treatment in conditions of iron overload may prove beneficial.  相似文献   

11.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

12.
Prolonged exposure to excessive aluminium (Al) concentrations is involved in the ethiopathology of certain dementias and neurological disorders. Melatonin is a well-known antioxidant that efficiently reduces lipid peroxidation due to oxidative stress. Herein, we investigated in synaptosomal membranes the effect of melatonin in preventing Al promotion of lipid and protein oxidation when the metal was combined with FeCl3 and ascorbic acid. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the membrane suspension and protein carbonyls were measured in the synaptosomes as an index of oxidative damage. Under our experimental conditions, the addition of Al (0.0001–1 mmol/L) enhanced MDA+4-HDA formation in the synaptosomes. In addition, Al (1 mmol/L) raised protein carbonyl contents. Melatonin reduced, in a concentration-dependent manner, lipid and protein oxidation due to Al, FeCl3 and ascorbic acid in the synaptosomal membranes. These results show that melatonin confers protection against Al-induced oxidative damage in synaptosomes and suggest that this indoleamine may be considered as a neuroprotective agent in Al toxicity because of its antioxidant activity.  相似文献   

13.
It has been reported that acetyl-l-carnitine (AcCn) can reduce the degenerative processes in the central nervous system of rats, modify the fluidity of membranes and decrease the accumulation of lipofuscins in neurones. In light of these considerations we have assayed the in vitro effect of acetyl-l-carnitine on spontaneous and induced lipoperoxidation in rat skeletal muscle; in addition, the effect of AcCn on XD/XO ratio was evaluated. The presence of AcCn (10–40 mM) in incubation medium significantly reduced MDA and conjugated diene formation in rat skeletal muscle; moreover, a significant decrease in induced MDA levels was observed when microsomal preparation where incubated in the presence of 10–40 mM AcCn. Since a significant reduction of XO activity was detected in the presence of 10–80 mM AcCn, the reduced lipid peroxidation by AcCn seems to be due to an inhibition of XO activity.  相似文献   

14.
A brief literature review shows that ionizing radiation in biological membranes and in pure lipid membranes causes malondialdehyde formation, indicating lipid peroxidation processes. With respect to membrane fluidization by ionizing radiation, in pure lipid membranes rigidization effects are always reported, whereas contradictory results exist for biological membranes. Starting from the assumption that membrane proteins at least partly compensate for radiation effects leading to a rigidization of membrane lipid regions, pig liver microsomes, as a representative protein-rich intracellular membrane system, were irradiated with X-rays or UV-C with doses up to 120 Gy at a dose rate of 0.67 Gy min–1 and up to 0.73 J cm–2 at an exposure rate of 16.2 mJ cm–2 min–1, respectively. For both irradiation types a weak but significant positive correlation between malondialdehyde formation and membrane fluidity is revealed throughout the applied dose ranges. We conclude that the membraneous protein lipid interface increases its fluidity under radiation conditions. Also, thymocyte ghosts showed an increased fluidity after X-ray irradiation. Fluidity measurements were performed by the pyrene excimer method.  相似文献   

15.
One of the major processes that occur as a result of radical-induced oxidative stress is lipid peroxidation (LPO). Degradation of lipid peroxides results in various products, including a variety of carbonyl compounds. In the present study eight different lipid degradation products, i.e., formaldehyde, acetaldehyde, acetone, propanal, butanal, pentanal, hexanal and malondialdehyde were identified and measured simultaneously and quantitatively in rat urine after derivatization with O-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine hydrochloride, extraction with heptane and using gas chromatography–electron-capture detection (GC–ECD). The identity of the respective oximes in urine was confirmed by gas chromatography–negative ion chemical ionization mass spectrometry (GC–NCI-MS). Simultaneously measured standard curves were linear for all oxime-products and the detection limits were between 39.0±5.3 (n=9) and 500±23 (n=9) fmol per μl injected sample. Recoveries of all products from urine or water were 73.0±5.2% and higher. In urine of CCl4-treated rats an increase in all eight lipid degradation products in urine was found 24 h following exposure. ACON showed the most distinct increase, followed by PROPA, BUTA and MDA. It is concluded that the rapid, selective and sensitive analytical method based on GC–ECD presented here is well suited for routine measurement of eight different lipid degradation products. These products appear to be useful as non-invasive biomarkers for in vivo oxidative stress induced in rats by CCl4.  相似文献   

16.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

17.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.  相似文献   

18.
Effects of melatonin, extremely-low-frequency magnetic field (ELF-MF), and their combination on AT478 murine squamous cell carcinoma line were studied. Manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (Cu/ZnSOD), and glutathione peroxidase (GSH-Px) were used as markers of cells antioxidative status, and malondialdehyde (MDA) level was used as a marker of lipid peroxidation. After melatonin treatment, antioxidative enzyme activities were increased and MDA level was decreased. Application of ELF-MF on treated cells caused an increase of both superoxide dismutases activity and MDA level, but influence of ELF-MF on GSH-Px activity was negligible. All enzyme activity in culture medium containing melatonin (10−3, 10−4, 10−5 M) after exposure to ELF-MF were significantly diminished compared to cells treated only with melatonin. Also MDA levels after combined treatment with melatonin and ELF-MF were significantly decreased. Observed changes were statistically significant (p<0.05). These results strongly suggest that ELF-MF attenuates antioxidative actions of melatonin on cellular level.  相似文献   

19.
Summary The membrane potential of identified nerve (Retzius) cells and neuropil glial cells from 11 (±1) day-old embryos of the leechHirudo medicinalis was recorded using conventional intracellular microelectrodes. At this stage all ganglia of the segmental nervous system are formed. The membrane potential of Retzius cells was –68±4 mV (±SD,n=8), and showed a slope of 42 mV between 10 mM and 100 mM external K concentration. Retzius cells were able to fire action potentials which had a fast Na-dependent component, and, under appropriate conditions, also generated slow Ca (Ba) action potentials. The mean membrane potential of the neuropil glial cell at physiological K concentration (4 mM) was –83±5 mV (±SD,n=10), and showed a dependence of 56 mV for a tenfold change in the external K concentration (> 4mM). Neuropil glial cells showed no signs of voltage-activated excitability, but they repeatedly depolarized in the presence of 0.1 mM 5-HT.  相似文献   

20.
Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (≤1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas α-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号