首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis   总被引:16,自引:0,他引:16  
The cytokine/extracellular matrix protein osteopontin (OPN/Eta-1) is an important component of cellular immunity and inflammation. It also acts as a survival, cell-adhesive, and chemotactic factor for endothelial cells. Here, subtractive suppression hybridization showed that serum-deprived murine aortic endothelial (MAE) cells transfected with the angiogenic fibroblast growth factor-2 (FGF2) overexpress OPN compared with parental cells. This was confirmed by Northern blotting and Western blot analysis of the conditioned media in different clones of endothelial cells overexpressing FGF2 and in endothelial cells treated with the recombinant growth factor. In vivo, FGF2 caused OPN expression in newly formed endothelium of the chick embryo chorioallantoic membrane (CAM) and of murine s.c. Matrigel plug implants. Recombinant OPN (rOPN), the fusion protein GST-OPN, and the deletion mutant GST-DeltaRGD-OPN were angiogenic in the CAM assay. Angiogenesis was also triggered by OPN-transfected MAE cells grafted onto the CAM. OPN-driven neovascularization was independent from endothelial alpha(v)beta(3) integrin engagement and was always paralleled by the appearance of a massive mononuclear cell infiltrate. Accordingly, rOPN, GST-OPN, GST-DeltaRGD-OPN, and the conditioned medium of OPN-overexpressing MAE cells were chemotactic for isolated human monocytes. Also, rOPN triggered a proangiogenic phenotype in human monocytes by inducing the expression of the angiogenic cytokines TNF-alpha and IL-8. OPN-mediated recruitment of proangiogenic monocytes may represent a mechanism of amplification of FGF2-induced neovascularization during inflammation, wound healing, and tumor growth.  相似文献   

2.
The concept of a membrane form of IL-1 arose from the observation that paraformaldehyde-treated macrophages display IL-1 bioactivity. Thus far, the biochemical characterization of a membrane form of the molecule has not been reported. In a recent publication we demonstrated that murine IL-1 alpha can be detected in the supernatants of paraformaldehyde-treated macrophages. These data indicate that the phenomenon of membrane IL-1 may result from leakage of IL-1 from inadequately fixed cells. In the current report we have extended our studies toward the examination of human IL-1 alpha and IL-1 beta. IL-1 activity can be detected in the supernatants of paraformaldehyde-treated human monocytes. Although anti-IL-1 alpha, but not anti-IL-1 beta, antibodies can efficiently block the IL-1 bioactivity, both IL-1 alpha and IL-1 beta can be found by immunoprecipitation in the supernatants of the fixed monocytes. IL-1 alpha is efficiently processed to the low m.w. form, whereas IL-1 beta remains predominantly as the inactive, precursor molecule. IL-1 is not found in the supernatants of monocyte membrane preparations, demonstrating that the leakage of IL-1 is from an intracellular, rather than membrane-bound source.  相似文献   

3.
The objective of this study is to investigate the characteristics of the recombinant variant ofhuman vascular endothelial cell growth inhibitor,VEGI_(72-251),and compare its biological activities with that ofits prototype VEGI_(24-174),The recombinant plasmid containing the variant VEGI_(72-251) gene was constructedand expressed in Escherichia coli.The effects of the expressed VEGI_(72-251) on cell proliferations were checkedin the human umbilical vein endothelial cell line and certain tumor cell lines (ECV304 and B 16).The inhibitionof VEGI_(72-251) on angiogenesis was detected in the chorioallantoic membrane of chick embryos.In comparisonwith VEGI_(24-174),the recombinant human VEGI_(72-251) seems to have no effect on the proliferation of endothelialcells and the angiogenesis of the chorioallantoic membrane in vitro.An enzyme-linked immunosorbent assay-based method was used for the measurement of interleukin-2 (IL-2) production by peripheral blood monocytes(PBMCs) treated with VEGI_(72-251).PBMCs were pretreated with VEGI_(72-251) (1.25-12.50μg/ml) for 24 h invitro,and the IL-2 concentration in PBMC medium was increased from 354 pg/ml to 1256 pg/ml.It can beconcluded that VEGI_(72-251) is able to increase the level of human IL-2 production by the activation of Tlymphocytes.Differing from VEGI_(24-174) on anti-angiogenesis,VEGI_(72-251) may serve as an anti-cancer factorthrough its activation of T lymphocytes.  相似文献   

4.
We have demonstrated previously that new blood vessel formation induced by angiogenic growth factors in onplants placed on the chorioallantoic membrane (CAM) of the chick embryos is critically dependent on the cleavage of fibrillar collagen by a previously unidentified interstitial collagenase. In the present study we have used a quantitative CAM angiogenesis system to search for and functionally characterize host avian collagenases responsible for the collagen remodeling associated with angiogenesis. Among the matrix metalloproteinases (MMPs) identified in the CAM onplant tissue, the chicken MMP-13 (chMMP-13) was the only enzyme whose induction and expression coincided with the onset of angiogenesis and blood vessel formation. The chMMP-13 cDNA has been cloned and recombinantly expressed. The chMMP-13 protein has been purified, characterized in vitro, and examined in situ in the CAM. MMP-13-positive cells appear in the CAM shortly after angiogenic stimulation and then accumulate in the collagen onplant tissue. Morphologically, the chMMP-13-containing cells appear as hematopoietic cells of monocyte/macrophage lineage. In vitro, the chMMP-13 proenzyme is rapidly and efficiently activated through the urokinase plasminogen activator/plasminogen/plasmin cascade into a collagenase capable of cleaving native but not the (r/r) mutant collagenase-resistant collagen. Surprisingly, nanogram levels of purified chMMP-13 elicit an angiogenic response in the CAM onplants comparable with that induced by the angiogenic growth factors. The chMMP-13-mediated response was efficiently blocked by select protease inhibitors indicating that plasmin-activated chMMP-13 can function as an angiogenic factor in vivo. Altogether, the results of this study extend the physiological role of MMP-13, previously associated with cartilage/bone resorption, to the collagen remodeling involved in the angiogenic cascade.  相似文献   

5.
通过RT PCR的方法从人外周血白细胞扩增血管生成素 (Ang)cDNA .在计算机分子结构模建的基础上 ,通过柔性连接臂构建了Ang与Gfp融合基因 ,并在大肠杆菌DH5α中实现了高效表达 .重组蛋白占菌体总蛋白的 32 %.融合蛋白经初步纯化后 ,在紫外线激发下可见明显的绿色荧光 ,同时能够显著地促进鸡胚尿囊膜毛细血管的新生 ,而且所获融合蛋白在体外具有促进人脐静脉血管内皮细胞增殖的作用 .这种双功能融合蛋白的表达为阐明Ang的核转位过程奠定了基础 ,同时为阐明血管新生的分子机制创造了条件  相似文献   

6.
The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin superfamily, is expressed in microvessels of proliferating tissues such as endometrium, in tissues after wounding, and in solid human tumors. In microvascular human endothelial cells, purified native and recombinant CEACAM1 stimulates proliferation, chemotaxis, and tube formation. In the chorioallantoic membrane of the chicken, CEACAM1 induces angiogenesis. The angiogenic effects of CEACAM1 are additive to those of the vascular endothelial growth factor (VEGF). The expression of CEACAM1 is up-regulated by VEGF, and VEGF-induced in vitro tube formation is blocked completely by a monoclonal CEACAM1 antibody. These findings indicate that CEACAM1 is an angiogenic factor and an effector of VEGF.  相似文献   

7.
8.
Endothelial cells respond to hypoxic changes with resultant accumulation of several metabolites and switch over to angiogenic phenotype. Although certain intermediates of glycolytic and oxidative metabolic pathways have been known to affect angiogenesis, the effect of citrate, which accumulates in certain tumors, on angiogenesis is not known. Therefore, the effect of citrate on angiogenesis was studied using different model systems. Increased vascularization in chorioallantoic membrane assay, increased endothelial sprouting in rat aortic rings, and increased expression of CD31, E-selectin in endothelial cells suggested a possible proangiogenic effect of citrate. Upregulation of angiogenic factors such as vascular endothelial growth factor and fibroblast growth factor suggested that the effect of citrate involves modulation of expression of angiogenic growth factors. LY 294002, an inhibitor of PI3K–Akt pathway, and wortmannin, an inhibitor of Akt pathway, reversed the effect of citrate in human umbilical vein endothelial cells. Citrate induced significant upregulation and activation of Akt in endothelial cells. Rapamycin, an inhibitor of mTOR, also reversed the effect of citrate in human umbilical vein endothelial cells and sprouting of aortic rings suggesting that the angiogenic effect of citrate involves activation of PI3K–Akt–mTOR pathway.  相似文献   

9.
These studies demonstrate the IgE-dependent production of IL-1 beta and TNF-alpha by circulating blood monocytes. IL-1 beta production was demonstrated biologically as the stimulation of proliferation of the cloned IL-1-dependent murine T cell line D10.G4.1 in the presence of a submitogenic concentration of PHA. In a representative experiment, 3H-thymidine uptake increased from 57826 cpm in the presence of supernatants obtained from unstimulated cells to 200774 cpm with supernatants from monocytes stimulated by IgE/alpha IgE immune complexes. By ELISA, IgE complexes increased IL-1 beta production from 0.54 +/- 0.06 ng (per 10(6) monocytes) to 2.60 +/- 0.62 ng (p less than 0.01; mean of eight experiments) and TNF-alpha production from 0.17 +/- 0.10 ng to 3.00 +/- 0.54 ng (p less than 0.01; mean of four experiments). No IL-1 alpha secretion was observed. RNA hybridization analysis demonstrated that IL-1 beta production represented de novo synthesis of the cytokine. Stimulated RNA production was observed after a minimal 1/2-h incubation and was maximal at 2 h. The IgE-dependent secretion of these pro-inflammatory cytokines by mononuclear phagocytic cells may contribute to the inflammation characteristic of allergic responses.  相似文献   

10.
Eosinophils play a crucial role in allergic reactions and asthma. They are also involved in responses against parasites, in autoimmune and neoplastic diseases, and in fibroses. There is increasing evidence that angiogenesis plays an important role in these processes. Since eosinophils are known to produce angiogenic mediators, we have hypothesized a direct contribution of these cells to angiogenesis. The effect of human peripheral blood eosinophil sonicates on rat aortic endothelial cell proliferation (in vitro), rat aorta sprouting (ex vivo) and angiogenesis in the chick embryo chorioallantoic membrane (in vivo) have been investigated. To determine whether eosinophil-derived vascular endothelial growth factor influences the eosinophil pro-angiogenic activity, eosinophil sonicates were incubated with anti-vascular endothelial growth factor antibodies and then added to the chorioallantoic membrane. Vascular endothelial growth factor mRNA expression and vascular endothelial growth factor receptor density on the endothelial cells were also evaluated. Eosinophils were found to enhance endothelial cell proliferation and to induce a strong angiogenic response both in the aorta rings and in the chorioallantoic membrane assays. Pre-incubation of eosinophil sonicates with anti-vascular endothelial growth factor antibodies partially reduced the angiogenic response of these cells in the chorioallantoic membrane. Eosinophils also increased vascular endothelial growth factor mRNA production on endothelial cells. Eosinophils are able to induce angiogenesis and this effect is partially mediated by their pre-formed vascular endothelial growth factor. This strongly suggests an important role of eosinophils in angiogenesis-associated diseases such as asthma.  相似文献   

11.
SPARC is a secreted glycoprotein that has been shown to disrupt focal adhesions and to regulate the proliferation of endothelial cells in vitro. Moreover, peptides resulting from the proteolysis of SPARC exhibit angiogenic activity. Here we describe the temporal synthesis, turnover, and angiogenic potential of SPARC in the chicken chorioallantoic membrane. Confocal immunofluorescence microscopy revealed specific expression of SPARC protein in endothelial cells, and significantly higher levels of SPARC were observed in smaller newly formed blood vessels in comparison to larger, developmentally older vessels. SPARC mRNA was detected at the earliest stages of chorioallantoic membrane morphogenesis and reached maximal levels at day 13 of embryonic development. Interestingly, steady-state levels of SPARC mRNA did not correlate directly with protein accumulation; moreover, the protein appeared to undergo limited degradation during days 10-15. Incubation of [125I]-SPARC with chorioallantoic membranes of different developmental ages confirmed that extracellular proteolysis occurred during days 9-15, but not at later stages (e.g., days 17-21). Comparison of peptides produced by incubation with chorioallantoic membranes with those generated by plasmin showed an identical pattern of proteolysis. Plasmin activity was present throughout development, and in situ zymography identified sites of plasminogen activator activity that corresponded to areas exhibiting high levels of SPARC expression. Synthetic peptides from a plasmin-sensitive region of SPARC, between amino acids 113-130, stimulated angiogenesis in the chorioallantoic membrane in a dose-dependent manner; in contrast, intact SPARC was inactive in similar assays. We have shown that SPARC is expressed in endothelial cells of newly formed blood vessels in a manner that is both temporally and spatially restricted. Between days 9 and 15 of chorioallantoic membrane development, the protein undergoes proteolytic cleavage that is mediated, in part, by plasmin. SPARC peptides released specifically by plasmin induce angiogenesis in vivo. We therefore propose that SPARC acts as an intrinsic regulator of angiogenesis in vivo.  相似文献   

12.
The existence of IL-1 activity on the cell surface of stimulated mononuclear phagocytes is a matter of controversy. In particular, fixation of IL-1-expressing cells for 15 min in 1% paraformaldehyde (PFA) is commonly used to evidence such "membrane-associated" IL-1 activity but other authors have attributed this to passive leakage of IL-1 alpha from the cells and report no activity with longer fixation times. Using specific IL-1 alpha and IL-1 beta assays, we found that after the mild standard PFA fixation procedure, not only IL-1 alpha but also IL-1 beta were released into the supernatants for up to 96 h following fixation; membrane IL-1 activity cannot thus be measured in these conditions. However, using conditions in which neither immunoreactive IL-1 molecules nor IL-1 activity are found in the supernatants (i.e. assay at 144 h, increased fixation time), we were still able to detect IL-1 activity on LPS-stimulated, PFA-fixed monocytes. This activity was independent of the duration of PFA fixation and was inhibited by anti-IL-1 alpha but not anti-IL-1 beta antibodies. Our data thus underline the importance of technical conditions in the study of membrane-associated IL-1 activity.  相似文献   

13.
Effect of ultrasound on the production of IL-8, basic FGF and VEGF.   总被引:10,自引:0,他引:10  
P Reher  N Doan  B Bradnock  S Meghji  M Harris 《Cytokine》1999,11(6):416-423
Therapeutic angiogenesis is the controlled induction or stimulation of new blood vessel formation to reduce unfavourable tissue effects caused by local hypoxia and to enhance tissue repair. The effects of ultrasound on wound healing, chronic ulcers, fracture healing and osteoradionecrosis may be explained by the enhancement of angiogenesis. The aim of this study was to identify which cytokines and angiogenesis factors are induced by ultrasound in vitro.Two ultrasound machines were evaluated, a "traditional" (1 MHz, pulsed 1:4, tested at four intensities), and a "long wave" machine (45 kHz, continuous, also tested at four intensities). The ultrasound was applied to human mandibular osteoblasts, gingival fibroblasts and peripheral blood mononuclear cells (monocytes). The following cytokines and angiogenesis factors were assayed by ELISA techniques: interleukin-1beta(IL-1beta), IL-6, tumour necrosis factor alpha (TNF-alpha), IL-8, fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF).A slight stimulation of IL-1beta was noted in all cell types. There was no difference in the IL-6 and TNF-alpha levels. The angiogenesis-related cytokines, IL-8 and bFGF, were significantly stimulated in osteoblasts, and VEGF was significantly stimulated in all cell types. Both ultrasound machines produced similar results, and the optimum intensities were 0.1 and 0. 4 W/cm2 (SATA) with 1 MHz ultrasound, and 15 and 30 mW/cm2 (SATA) with 45 kHz ultrasound.The results show that therapeutic ultrasound stimulates the production of angiogenic factors such as IL-8, bFGF and VEGF. This may be one of the mechanisms through which therapeutic ultrasound induces angiogenesis and healing.  相似文献   

14.
Intra- and extracellular signaling by endothelial neuregulin-1   总被引:1,自引:0,他引:1  
Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.  相似文献   

15.
Angiogenesis plays an important role in tissue remodeling and repair during the late phase of inflammation. In the present study, we show that human dendritic cells (DC) that matured in the presence of anti-inflammatory molecules such as calcitriol, PGE2, or IL-10 (alternatively activated DC) selectively secrete the potent angiogenic cytokine vascular endothelial growth factor (VEGF) isoforms VEGF165 and VEGF121. No VEGF production was observed in immature or classically activated DC. Also, the capacity to produce VEGF was restricted to the myeloid DC subset. When implanted in the chick embryo chorioallantoic membrane, alternatively activated DC elicit a marked angiogenic response, which is inhibited by neutralizing anti-VEGF Abs and by the VEGFR-2 inhibitor SU5416. Therefore, alternatively activated DC may contribute to the resolution of the inflammatory reaction by promoting VEGF-induced angiogenesis.  相似文献   

16.
Angiogenesis is the formation of new blood vessels from the existing vasculature and is necessary for tumor growth. Syndecan-2 (S2) is highly expressed in the microvasculature of mouse gliomas. When S2 expression was down-regulated in mouse brain microvascular endothelial cells (MvEC), this inhibited cell motility and reduced the formation of capillary tube-like structures in vitro. Pro-angiogenic growth factors and enzymes up-regulated during glioma tumorigenesis stimulated shedding of the S2 ectodomain from endothelial cells in vitro. The effect of shed S2 on angiogenic processes was investigated by incorporating recombinant S2 ectodomain (S2ED) into in vitro angiogenesis assays. S2ED promoted membrane protrusion, migration, capillary tube formation, and cell-cell interactions. We therefore propose that S2 is necessary for angiogenesis of MvEC, proangiogenic factors expressed during glioma progression regulate S2 shedding, and shed S2 ectodomain may increase endothelial cell angiogenic processes.  相似文献   

17.
There is much evidence that rheumatoid arthritis is closely linked to angiogenesis. Important angiogenic mediators have been demonstrated in synovium and tenosynovium of rheumatoid joints. VEGF (Vascular Endothelial Growth Factor), expressed in response to soluble mediators such as cytokines and growth factors and its receptors are the best characterized system in the angiogenesis regulation of rheumatoid joints. Moreover, other angiogenic mediators such as platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), epidermal growth factor (EGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), transforming growth factor beta (TGF-beta), tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-6, IL-8, IL-13, IL-15, IL-18, angiogenin, platelet activating factor (PAF), angiopoietin, soluble adhesion molecules, endothelial mediator (endoglin) play an important role in angiogenesis in rheumatoid arthritis. On the other hand, endostatin, thrombospondin-1 and -2 are angiogenic inhibitors in rheumatoid arthritis. The persistence of inflammation in rheumatoid joints is a consequence of an imbalance between these inducers and inhibitors of angiogenesis.  相似文献   

18.

Background

Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα.

Methods and Results

Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay.

Conclusion

ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity.  相似文献   

19.
The cytokine midkine (MK) promotes tumor growth mainly by inducing angiogenesis. Here, we identified the source of MK in the vascular system under hypoxic conditions and demonstrated the relevance of MK during ischemia of normal tissue. Hypoxia increased MK protein expression in human polymorphonuclear neutrophils (PMN), monocytes, and human umbilical vein endothelial cells (HUVEC) compared with normoxia. Immunoelectron microscopy showed elevated cell surface expression of MK in PMN and monocytes during hypoxia. However, only HUVEC released significant amounts of soluble MK during hypoxia compared with normoxia (301 ± 81 pg/ml vs. 158 ± 45 pg/ml; P < 0.05). Exogenous MK induced neovascularization in a chorioallantoic membrane (CAM) assay compared with negative control as measured by counting the number of branching points per visual field (1,074 ± 54 vs. 211 ± 70; P < 0.05). In a hind limb ischemia model, the angiogenic response was almost completely absent in MK-deficient mice, whereas control animals showed a profound angiogenic response measured as proliferating endothelial cells per visual field (45 ± 30 vs. 169 ± 34; P < 0.01). These unanticipated results identified endothelial cells as the source of soluble MK in the vascular system during hypoxia and defined MK as a pivotal player of angiogenesis during ischemia in nonmalignant tissue.  相似文献   

20.
To understand the secretion and processing of interleukin-1 (IL-1), a Chinese hamster fibroblast cell line (R1610) was transfected with a human IL-1 beta cDNA under the control of the SV40 early promoter and linked to the gene for neomycin resistance. After selecting for transfected cells resistant to G418, two clones were found to constitutively express the IL-1 beta 31-kD precursor which was almost exclusively located in the cytosol. Pulse-chase experiments failed to show any secretion of IL-1 and very little IL-1 activity was detectable in cell supernatants. Furthermore, surface membrane IL-1 activity could not be detected, although low levels of activity could be released upon brief trypsin treatment. Therefore, unlike monocytes, these fibroblast cells lack the mechanism for secreting and processing of IL-1 beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号