首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two histological techniques, bright-field microscopy and immunofluoresecent staining were used to elucidate the lethal effect, target tissues and binding sites of phytohemagglutinin (PHA), a lectin from Phaseolus vulgaris L., on the western tarnished plant bug. Bright-field microscopy showed that the nuclei of the foregut epithelial cells were slightly disrupted and elongated but the lumen of the gut was open. The midgut epithelial cells also showed severe disruption. However, the cells of the first and the third ventriculus were much more sensitive to PHA than those in the second ventriculus. The epithelial cells in these two regions were severely disrupted and swollen toward the lumen, resulting in complete closure of the gut. Most of the cells in these regions contained two nuclei. Also, interestingly, the epithelial cells of the hindgut were drastically disrupted leading to complete closure of the lumen. Immunofluoresecent images from the midgut showed that strong binding occurred on brush-border microvilli of the epithelial cells only within the first and third ventriculi, and some signals within their cytoplasm. Thus, immunofluoresecent studies showed that PHA binds preferentially to the midgut region which demonstrates the most severe effects, and that these cells may endocytose the bound PHA.  相似文献   

2.
We assessed histological changes in the tissues of the crown-of-thorns starfish Acanthaster planci (COTS) after injection of thiosulfate-citrate-bile-sucrose agar (TCBS) which was used as a disease inducer (potential outbreak control method), by conventional and scanning electron microscopy. Digestive glands were processed and stained with hematoxylin and eosin to describe the histological architecture of the intestinal epithelium. Subsequently comparison of healthy versus infected tissues and Gram stains were carried out to confirm bacterial occurrence on infected tissues, characterize the structural changes induced by bacterial communities in COTS tissues, and to determine if the histopathological changes of intestinal tissues were consistent with vibrio infection. TCBS injections induced marked epithelial desquamation, hypertrophy and hypersecretion of glandular cells, epithelial cell destruction, pyknosis, reduction of thickness and disorganization of connective tissue and associated nerve plexus, presence of bacterial colonies, irregular eosinophilic foci in glandular cells, brush border disruption, atrophy and detachment of intestinal microvilli and cell debris in the lumen. All these changes were attributed to a fulminating systemic dysbiosis and were consistent with vibrio infections.  相似文献   

3.
Red kidney bean, Phaseolus vulgaris, contains a lectin phytohemagglutinin (PHA) with toxicity towards higher animals. PHA exists in the isoforms PHA-E and PHA-L, which agglutinate erythrocytes and lymphocytes, respectively. Lacanobia oleracea larvae were reared from hatch on artificial diets containing PHA-E or PHA-L at 2% (w/w) dietary protein, and on transgenic Arabidopsis plants expressing either lectin at 0.4-0.6% of total soluble proteins. In artificial diet bioassays neither lectin affected larval survival, development, growth nor consumption. In transgenic plant bioassays both PHA-E and PHA-L promoted larval growth and development. This effect was greatest for PHA-E. Mean larval biomass of insects fed on plants expressing PHA-E was significantly greater (up to two-fold) than controls during the final two instars and the insects developed at a significantly greater rate so that after 26 days 83% of PHA-E exposed insects were in the final instar compared to 44% for control insects. PHA-E and PHA-L were detected by Western blotting in haemolymph, sampled from insects fed diets or plant material containing the lectins. However, despite the demonstrated potential for both isolectins to bind to gut glycopolypeptides in vitro neither was found to accumulate in vivo in the guts of exposed insects. Since lectin binding to gut polypeptides is thought to be necessary for insecticidal activity the failure of PHA-E and PHA-L to bind in vivo may account for their lack of toxicity to L. oleracea.  相似文献   

4.
Peritrophic membrane or matrix (PM) secretion and formation patterns were examined in the cabbage looper larvae (Trichoplusia ni[Hubner]) by transmission and scanning electron microscopy (SEM). PM first became visible in the lumen between tips of the microvilli and the stomodeal valves as a single layered fibrous structure that became more compact in appearance in the middle and posterior mesenteron. In the anterior mesenteron, nascent PM was visible within the brush border as a fibrous linear structure that contained both the major PM matrix protein, invertebrate intestinal mucin (IIM) and chitin-containing structures. Even though delamination events were confined to the anterior mesenteron, IIM was secreted by columnar epithelial cells throughout the length of the mesenteron. SEM of the midgut epithelium revealed PM covering individual epithelial cells.  相似文献   

5.
Corallini C  Gaino E 《Tissue & cell》2001,33(4):402-407
The caddisfly Ceraclea fulva feeds exclusively on the freshwater sponge Ephydatia fluviatilis. Sponge spicules are accumulated in the insect midgut and arranged perpendicularly to the longitudinal axis of its gut. The peritrophic membrane of the midgut is so thick that it prevents spicules from damaging the epithelium during their transit. The digestion process of the endocellular zoochlorellae, which are vehiculated by the sponge cells, was examined by transmission electron microscopy (TEM). Zoochlorellae were seen in the midgut lumen, close to the peritrophic membrane and in the underlying space. Discrete algal cells became evident in tight apposition to the brush border of the midgut cells and were enveloped by the microvilli. Digestion progressed to the final transformation of the organism into membrane-delimited vacuoles.  相似文献   

6.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

7.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with 125I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

8.
Arthropod-borne viruses were not previously believed to cause discernible pathologic changes in their natural mosquito vectors. We report cytopathologic lesions in the midgut of the mosquito, Culiseta melanura, 2 to 5 days after oral infection with eastern equine encephalomyelitis virus. Sloughing of densely staining, heavily infected epithelial cells into the midgut lumen was observed by light and transmission electron microscopy, along with degeneration of cells within the epithelium. Pathological changes in midgut epithelial cells sometimes included loss of brush border and basal lamina integrity. Disruption of the midgut basal lamina could result in bypassing of barriers to virus dissemination within the mosquito and allow rapid transmission to occur. Alternatively, luminal sloughing of heavily infected midgut epithelial cells may serve to modulate mosquito infections. These findings challenge previous beliefs regarding the benign nature of arbovirus-invertebrate host relationships.  相似文献   

9.
The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the Cry1A class of Bt toxins have been identified: an aminopeptidase N (APN-1) and a 270 kDa anionic glycoconjugate (BTR-270). Studies have shown that APN-1 has a relatively weak affinity and a very narrow specificity to Cry1Ac, the only Cry1A toxin that it binds. In contrast, BTR-270 binds all toxins that are active against L. dispar larvae, and the affinities for these toxins to BTR-270 correlate positively with their respective toxicities. In this study, an immunohistochemical approach was coupled with fluorescence microscopy to localize APN-1 and BTR-270 in paraffin embedded midgut sections of L. dispar larvae. The distribution of cadherin and alkaline phosphatase in the gut tissue was also examined. A strong reaction indicative of polyanionic material was detected with alcian blue staining over the entire epithelial brush border, suggesting the presence of acidic glycoconjugates in the microvillar matrix. The Cry1A toxin-binding sites were confined to the apical surface of the gut epithelial cells with intense labeling of the apical tips of the microvilli. APN-1, BTR-270, and alkaline phosphatase were found to be present exclusively along the brush border microvilli along the entire gut epithelium. In contrast, cadherin, detected only in older gypsy moth larvae, was present both in the apical brush border and in the basement membrane anchoring the midgut epithelial cells. The topographical relationship between the Bt Cry toxin-binding molecules BTR-270 and APN-1 and the Cry1A toxin-binding sites that were confined to the apical brush border of the midgut cells is consistent with findings implicating their involvement in the mechanism of the action of Bt Cry toxins.  相似文献   

10.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

11.
A morphological study of the midgut of Lutzomyia intermedia, the primary vector of cutaneous leishmaniasis, in southeast Brazil, was conducted by light, scanning and transmission electron microscopy. The midgut is formed by a layer of epithelium of columnar cells on a non-cellular basal lamina, under which there is a musculature, which consists of circular and longitudinal muscular fibers. A tracheolar network is observed surrounding and penetrating in the musculature. Females were examined 12, 24, 48, 72 h and 5 days following a blood meal and were analyzed comparatively by transmission electron microscopy with starved females. In starved females, the epithelium of both the anterior and posterior sections of the midgut present whorl shaped rough endoplasmic reticulum. The posterior section does not present well-developed cellular structures such as mitochondria. Observations performed at 12, 24, 48 and 72 h after the blood meal showed morphological changes in the cellular structures in this section, and the presence of the peritrophic matrix up to 48 h after the blood meal. Digestion is almost complete and a few residues are detected in the lumen 72 h after blood feeding. Finally, on the 5th day after the blood meal all cellular structures present the original feature resembling that seen in starved sand flies. Morphometric data confirmed the morphological observations. Mitochondria, nuclei and microvilli of midgut epithelial cells are different in starved and blood fed females. The mitochondria present a similar profile in the epithelium of both the anterior and posterior section of the midgut, with higher dimension in starved females. The cell microvilli in the posterior section of the midgut of starved females are twice the size of those that had taken a blood meal. We concluded that there are changes in the midgut cellular structures of L. intermedia during the digestion of blood, which are in agreement with those described for other hematophagous diptera.  相似文献   

12.
Cryptosporidium cuniculus in the rabbit (Oryctolagus cuniculus)   总被引:2,自引:0,他引:2  
Cryptosporidium cuniculus was identified by light and electron microscopy in two apparently healthy rabbits. Organisms were firmly attached at the brush borders of intestinal epithelial cells. Cellular alterations were minimal, consisting of elongation and shortening of microvilli adjacent to the attachment sites of organisms. Various developmental stages of cryptosporidium were identified by electron microscopy.  相似文献   

13.
The development of perimicrovillar membranes (PMM) from midgut cells of starved and fed Dysdercus peruvianus was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and assays for specific enzymatic markers of the perimicrovillar membranes (alpha-glucosidase), perimicrovillar space (aminopeptidase) and microvillar membranes (beta-glucosidase). High activities of these enzymes were observed 6h post-feeding and significant production of membranes was observed at 30 h post-feeding. In the gut cells of starved insects, the rough endoplasmic reticulum was organized in concentric bundles, with a greater number of mitochondria in the cellular apex. The presence of electron dense double-membrane vesicles and the production of PMM were not observed in this condition. Thirty hours post-feeding, a disorganization of the rough endoplasmic reticulum was observed, and it was possible to see double-membrane vesicles close to the cell apex. The membrane system formation was evident with a significant development of PMM in the midgut lumen. The luminal surface of the midgut during starvation and up to 48 h post-feeding was monitored using SEM. It was demonstrated that in the starved condition, the PMM was virtually absent from gut cells, except at the base of the microvilli. At 6h post-feeding, the microvilli were already completely covered with PMM, but with a maximum of PMM formation seen at 30 h post-feeding. Signals of PMM degradation were observed 48 h after pulse feeding.  相似文献   

14.
胡氏边白蚁消化系统的微细构造   总被引:1,自引:0,他引:1  
卢宝廉 《昆虫学报》1991,34(2):155-158
胡氏边白蚁Marginitermes hubbardi(Banks)消化系统可分为前肠、中肠及后肠三大段.前肠包括葡萄状唾腺、口、咽喉、食道、前胃及贲门瓣;从贲门瓣开始到马氏管着生处为止这一段为中肠;后肠则分为葫芦形胃、结肠、直肠和肛门.其消化系统的特点:在前、后肠有几丁内膜、细胞层上还有一层微绒毛;上皮细胞底膜内陷很深,折叠中夹着许多线粒体;中肠围食膜表面有几丁层一直延伸到后肠;后肠前端膨大的葫芦胃中共生了很多种细菌及原生动物,共生的细菌、动物分泌纤维素酶帮助它消化木质纤维.  相似文献   

15.
Rice brown planthoppers (Nilaparvata lugens) were fed on artificial diet containing snowdrop lectin (Galanthus nivalis agglutinin; GNA), which has been shown to be toxic towards this insect pest. In addition to decreasing survival, the lectin affected development, reducing the growth rate of nymphs by approximately 50% when present at a concentration of 5.3&mgr;M. Immunolocalisation studies showed that lectin binding was concentrated on the luminal surface of the midgut epithelial cells within the planthopper, suggesting that GNA binds to cell surface carbohydrate moieties in the gut. Immunolabelling at a lower level was also observed in the fat bodies, the ovarioles, and throughout the haemolymph. These observations suggest that GNA is able to cross the midgut epithelial barrier, and pass into the insect's circulatory system, resulting in a systemic toxic effect. Electron microscope studies showed morphological changes in the midgut region of planthoppers fed on a toxic dose of GNA, with disruption of the microvilli brush border region. No significant proteolytic degradation of GNA was observed either in the gut or honeydew of planthoppers fed on lectin-containing diet. The presence of glycoproteins which bind GNA in the gut of the brown planthopper was confirmed using digoxigen-labeled lectins to probe blots of extracted gut polypeptides.  相似文献   

16.
Our previous work has shown that retinoic acid (RA) enhances fibroblast cell attachment to plastic and to laminin. The treatment of NIH-3T3 cells with RA for 2 days also caused a reproducible increase in the binding of the lectin Phaseolus vulgaris leukoagglutinin (PHA-L) to a glycoprotein of molecular weight 130,000 (gp130) as judged by SDS-PAGE analysis. This finding is consistent with an increased number of beta-1,6-linked N-acetylglucosaminyl residues on gp130. Of the 11 additional lectins tested Ricinus communis agglutinin I (RCA), Phaseolus vulgaris erythroagglutinin (PHA-E), soybean agglutinin (SBA), and succinylated wheat germ agglutinin (sWGA) showed a significant increase in binding specifically to gp130. Similar to RA, 13-cis-RA and 3,5-di-tert-butyl-4-chalcone carboxylic acid, a synthetic retinoid, also increased PHA-L binding to gp130; they also enhanced cell adhesiveness and inhibited cell growth. N-(4-Hydroxyphenyl)-all-trans-retinamide and thyroxine failed to influence adhesion and did not increase PHA-L binding to gp130. Moreover these compounds also failed to inhibit cell growth and to alter the morphology of the cultured cells. Since trypsin is utilized to remove cells from the culture dishes before they are used in the attachment assay to laminin, we studied the effect of this trypsinization step on PHA-L binding to gp130. Trypsin reduced PHA-L binding thus suggesting cell surface localization of gp130. After trypsin treatment RA-treated cells still showed enhanced PHA-L binding compared to dimethyl sulfoxide (DMSO) control. In conclusion RA-induced cell adhesiveness and growth inhibition are accompanied by an increase in the PHA-L, PHA-E, SBA, RCA, and sWGA binding to gp130. The sensitivity of gp130 to trypsin suggests that it is a cell surface glycoprotein.  相似文献   

17.
The Cry1C delta-endotoxin from Bacillus thuringiensis is toxic to both lepidopteran and dipteran insect larvae. To analyze the dipteran-specific insecticidal mechanisms, we investigated the properties of Cry1C binding to the epithelial cell membrane of the larval midgut from the mosquito Culex pipiens in comparison with dipteran-specific Cry4A. Immunohistochemical staining of the larval midgut sections from Culex pipiens showed that Cry1C and Cry4A bound to the microvilli of the epithelial cells. The Cry1C binding to brush border membrane vesicles from the mosquito larvae was specific and irreversible, and did not compete with Cry4A. By ligand blotting analyses, we detected several Cry1C-binding proteins, the Cry1C binding to which did compete with excess unlabeled Cry4A. These results suggested that Cry1C and Cry4A recognized the same binding site(s) on the epithelial cell surface but that their interaction with the target membrane differed.  相似文献   

18.
We have localized capping protein in epithelial cells of several chicken tissues using affinity-purified polyclonal antibodies and immunofluorescence. Capping protein has a distribution in each tissue coincident with proteins of the cell-cell junctional complex, which includes the zonula adherens, zonula occludens, and desmosome. "En face" views of the epithelial cells showed capping protein distributed in a polygonal pattern coincident with cell boundaries in intestinal epithelium, sensory epithelium of the cochlea, and the pigmented epithelium of the retina and at regions of cell-cell contact between chick embryo kidney cells in culture. "Edge-on" views obtained by confocal microscopy of intact single intestinal epithelial cells and of retinal pigmented epithelium showed that capping protein is located in the apical region of the epithelial cells coincident with the junctional complexes. These images do not resolve the individual types of junctions of the junctional complex. Immunolabeling of microvilli or stereocilia was faint or not detectable. Capping protein was also detected in the cytoplasm of intact intestinal epithelial cells and in nuclei of cells in the pigmented retina and in the kidney cell cultures, but not in nuclei of cells of the intestinal epithelium or sensory epithelium. Biochemical fractionation of isolated intestinal epithelial cells shows capping protein in the brush border fraction, which contains the junctional complexes, and in the soluble fraction. These results are consistent with the results of the immunolabeling experiments. Highly purified microvilli of the brush borders also contained capping protein; this result was unexpected based on the low intensity of immunofluorescence staining of microvilli and stereocilia. The microvilli were not contaminated with junctional complexes, as defined by the absence of several markers for cell junctions. The cause and significance of this discrepancy is not certain at this time. Since capping protein binds the barbed end of actin filaments in vitro, we hypothesize that capping protein is bound to the barbed ends of actin filaments associated with one or more of the junctions of the junctional complex.  相似文献   

19.
Fine structure of the midgut and degeneration of the midgut epithelium of the scorpionfly Sinopanorpa tincta (Navás) adults were investigated using light microscopy and scanning and transmission electron microscopy. The results show that the tubular midgut lacks gastric caeca and is composed of an outer longitudinal and an inner circular muscle layer, a basal lamina, an epithelium and a lumen from the outside to inside. A peritrophic membrane was not found in the lumen. A mass of nodules was observed on the surface of the basal lamina. Three types of cells were recognized in the epithelium: digestive, secretory, and regenerative cells. The digestive cells contain irregular-shaped infoldings in the basal membrane and two types of microvilli in the apical membrane. The secretory cells are characterized by irregular shape and large quantities of secretory granules in the basal cytoplasm. The regenerative cells are triangular in shape and distributed only in the nodules. The epithelial cells are degenerated through programmed cell-death mechanisms (apoptosis and necrosis). The type, function, and degeneration of the epithelial cells of the midgut are briefly discussed.  相似文献   

20.
Ultrastructural studies using scanning electron microscopy (SEM), negative-staining transmission electron microscopy (TEM), and thin-sectioning TEM on four species of Spiroplasma, in vitro and/or in vivo, indicated that their helices commonly possess one tapered end (tip structure) and one blunt or round end. These tip structures appeared morphologically different from the rest of the helix, exhibiting an electron-dense conical or rod-shaped core. In thin sections of the midgut of the leafhopper Dalbulus elimatus, the tip structures of Spiroplasma kunkelii in the midgut lumen were mostly aligned between microvilli, perpendicular to the apical plasma membrane of epithelial cells. These tip structures appeared frequently attached or closely apposed to the plasma membrane, in which cup-shaped invaginations close to the tips were observed. Pleomorphic forms of spiroplasma, enclosed in membranous vesicles, were found in the cytoplasm of the midgut epithelial cells. These findings suggest that the tip structure may be involved in the orientation and attachment of spiroplasma helices in relation to their host cells, and thus may be functionally comparable to the attachment organelle of mycoplasmas. Additionally, pili-like structures were observed by negative-staining TEM on the surface of Spiroplasma melliferum, and in thin sections of S. kunkelii infecting the leafhopper vector Dalbulus gelbus. Abbreviations CSS Corn stunt spiroplasma - SEM Scanning electron microscopy - TBS Tris-buffered saline - TEM Transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号