首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Materials have been generalized that were accumulated in population-ontogenetic studies of plants and leading features of the ontogeny of plants have been noted that determine specific structural features of their populations. The described patterns allowed the authors to develop simulation models of plant population dynamics. The results of simulation are provided, and they are compared to the empirical data. Problems have been considered that concern the influence of specific features of development of different plant biomorphs on the genetic structure of populations and biocoenotic processes.  相似文献   

2.
Rare plant species of Central Siberia, included in the regional Red Lists, are considered in the context of their population strategies. The potential possibilities and positions of species populations have been analyzed. The functional approach to the evaluation of rare plants behavior is proposed. The functional typology of rare plants and specific features of their behavior is recommended to be used for the development of measures for their protection.  相似文献   

3.
Summary Theoretical predictions from a simulation model of insect distributions and dispersal among isolated food plants have been tested with data gathered from 13 Cinnabar moth populations. Agreement with the predictions was good. Egg batch size was equal to or slightly larger than the number which could be supported by the average food plant. Egg batch distribution was more clumped when density was high and when egg batch size was small relative to food plant size. The tendency for larval dispersal was lower in populations in areas where plants were widely spaced. These findings indicate that the Cinnabar moth has the genetic or phenotypic flexibility to adjust egg batch size, egg distribution, and larval dispersal to characteristics of the habitat. A hypothesized model is proposed to describe the interactions between larval dispersal, food plant response to defoliation, and population fluctuations for the Cinnabar moth and its food plant, tansy ragwort.  相似文献   

4.
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。  相似文献   

5.
李委涛  郑玉龙  冯玉龙 《生态学报》2014,34(23):6890-6897
飞机草(Chromolaena odorata)是我国热带地区危害严重的外来入侵植物,为揭示适应进化对其成功入侵的贡献,在同质种植园中,比较研究了飞机草10个入侵地种群与12个原产地种群生长性状的差异,为排除奠基者效应的可能影响,进一步比较了飞机草10个入侵地种群与其原产地可能的祖先种群间的差异。结果表明,飞机草10个入侵地种群的基茎、株高、分枝数、生物量和比叶面积均显著高于12个原产地种群;与可能的祖先种群相比,飞机草10个入侵种群的生物量、分枝数和比叶面积仍更高。这些结果表明,在长期的入侵过程中飞机草通过进化提高了资源向生长的分配,支持增强竞争能力的进化假说。  相似文献   

6.
Serpentine soils are hostile to plant life. They are dry, contain high concentrations of nickel and have an unfavorable calcium/magnesium ratio. The dioecious plant Silene dioica (L.) Clairv. (Caryophyllaceae) is the most common herb on serpentine soils in the Swedish mountains. It also commonly grows on non-serpentine soils in the subalpine and coastal area. I have compared the germination frequency, plant establishment and growth of serpentine and subalpine non-serpentine populations in serpentine soil under greenhouse conditions. Further more I have studied the specific effect of nickel on root and shoot growth of serpentine and non-serpentine plants from the subalpine and coastal area in solutions with different concentrations of nickel. Plants from serpentine and non-serpentine populations grew well and in a similar fashion in serpentine soil. Moreover, S. dioica plants, irrespective of original habitat, tolerated enhanced concentrations of nickel when grown in solutions. An analysis of metal content in serpentine plants from natural populations shows that S. dioica has a higher nickel concentration in the roots than in the shoots. The growth studies show that S. dioica is constitutively adapted to serpentine, and that all populations have the genetic and ecological tolerance to grow on serpentine.  相似文献   

7.
Plant extracellular vesicles (EVs) play critical roles in the cross-kingdom trafficking of molecules from hosts to interacting microbes, most notably in plant defense responses. However, the isolation of pure, intact EVs from plants remains challenging. A variety of methods have been utilized to isolate plant EVs from apoplastic washing fluid (AWF). Here, we compare published plant EV isolation methods, and provide our recommended method for the isolation and purification of plant EVs. This method includes a detailed protocol for clean AWF collection from Arabidopsis thaliana leaves, followed by EV isolation via differential centrifugation. To further separate and purify specific subclasses of EVs from heterogeneous vesicle populations, density gradient ultracentrifugation and immunoaffinity capture are then utilized. We found that immunoaffinity capture is the most precise method for specific EV subclass isolation when suitable specific EV biomarkers and their corresponding antibodies are available. Overall, this study provides a guide for the selection and optimization of EV isolation methods for desired downstream applications.  相似文献   

8.
Despite the acknowledged importance of frugivores as seed dispersal agents we still lack a general understanding of the mechanisms by which these animals could shape plant populations and communities. We used a spatially explicit stochastic simulation to explore how frugivore movement decisions interact with landscape properties, thus affecting plant population dynamics through dispersal. The model simulated bird movement, foraging, seed deposition and plant recruitment. We assumed that plants lived only for one season and that recruitment was a function of local seed density. We also considered the effect of perches as non‐food landscape features. Our simulation experiments consisted in varying the parameters governing bird foraging decisions in relation to 1) how fruit abundance biased their movement, and 2) how the willingness to visit a plant or perch decreased with distance to current location. Simulated plant population dynamics was strongly influenced by bird behavior. The scale of foraging decisions had a much stronger effect on plant dynamics than biases due to fruit abundance. Birds tended to concentrate their activities in the center of the landscape where plants became more abundant, increasing local competition. The presence of perches reduced this tendency resulting in larger population sizes. The importance of perches highlights the fact that behaviors other than foraging can have a strong impact on the patterns of seed deposition and hence on plant population dynamics. Several recent studies have combined animal movement data with seed retention time in order to predict seed dispersal kernels. These studies usually emphasize the ecological implications of the scale and shape of such kernels. However, our simulation results reveal that movement directionality and the fact that birds moved mostly among plants and perches can have a major impact on plant population dynamics.  相似文献   

9.
Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption) only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals) than for small populations (<1000 flowering individuals) for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments.  相似文献   

10.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

11.
Anthropogenic disturbances adversely affect populations of rare and endemic plants, resulting in reduction of their population size and performance. Among different plant groups, deceptive terrestrial orchids are vulnerable and possess greater extinction risks because of rarity in occurrence. To understand the response of food‐deceptive terrestrial orchids to disturbances, we selected Dactylorhiza hatagirea as our representative species, which is endemic to Himalaya, and studied its natural populations. This species is rare for being habitat specific, pollination limited and threatened in its natural habitats. We tested the hypothesis that disturbances lead to reduction in population size and plant performance of food‐deceptive terrestrial orchids. For assessing the impact of disturbance, two contrasting groups, heavily devastated (HD) and lightly devastated (LD), were identified on the basis of frequency and intensity of disturbance (harvesting of plant for tubers) by interviewing local people, medicinal plant extractors and shepherds. HD sites, in comparison to LD sites, were found to have smaller population sizes, but showed an increase in plant growth traits (plant height, specific leaf area, leaf N and specific shoot length). Similarly, plants at HD sites were found to have invested less in inflorescence (inflorescence size, inflorescence length, inflorescence length fraction and flowers per length), but despite that showed higher reproductive success. This was a clear indication of enhanced performance of its populations driven by disturbances. Our findings suggested that food‐deceptive species in small populations tend to reduce the probability of population extinction and have the capability to recover rapidly if conserved in time.  相似文献   

12.
Similar patterns of dispersal and gene flow between closely associated organisms may promote local adaptation and coevolutionary processes. We compare the genetic structures of the two species of a plant genus (Roridula gorgonias and R. dentata) and their respective obligately associated hemipteran mutualists (Pameridea roridulae and P. marlothi) using allozymes. In addition, we determine whether genetic structure is related to differences in host choice by Pameridea. Allozyme variation was found to be very structured among plant populations but less so among hemipteran populations. Strong genetic structuring among hemipteran populations was only evident when large distances isolated the plant populations on which they live. Although genetic distances among plant populations were correlated with genetic distances among hemipteran populations, genetic distances of both plants and hemipterans were better correlated with geographic distance. Because Roridula and Pameridea have different scales of gene flow, adaptation at the local population level is unlikely. However, the restricted gene flow of both plants and hemipterans could enable adaptation to occur at a regional level. In choice experiments, the hemipteran (Pameridea) has a strong preference for its carnivorous host plant (Roridula) above unrelated host plants. Pameridea also prefers its host species to its closely related sister species. Specialization at the specific level is likely to reinforce cospeciation processes in this mutualism. However, Pameridea does not exhibit intraspecific preferences toward plants from their natal populations above plants from isolated, non-natal populations.  相似文献   

13.
Recent reviews of evidence for plant metapopulation prevalence in nature have concluded that most species appear not to be arranged as metapopulations – hence other frameworks may be necessary for understanding large‐scale, regional dynamics in plants. Separate but related paradigms from the disciplines of landscape ecology and metapopulation ecology exist for understanding patterns of regional population variation. The major models of both paradigms assume a binary landscape mosaic composed of “suitable habitat” and background “matrix.” An important distinction between the two approaches is that metapopulation models essentially ignore features of the matrix. A binary approach to the landscape seems inappropriate for plants for several reasons. First, plants probably do not have a binary perception of the landscape, but rather respond to gradients of resource quality. Thus properties of patches, or the matrix per se, may be less important than the nature of the landscape mosaic, in particular as this is reflected in terms of connectivity. Secondly, many plants rely on a range of other agents for dispersal of pollen and seed, all of which are also affected by their environment in terms of connectivity. Furthermore the various components of the mosaic, including physical, spatial and functional elements can significantly influence plant movements. We review important effects of the matrix – via composition and configuration of habitat patches, extent of edges, patterns of land use, etc., upon plant populations. We describe evidence supporting a general integration of metapopulation and landscape ecological approaches for understanding regional dynamics in plants, emphasizing notions of connectivity (traditionally measured in very different ways by metapopulation and landscape ecologists), and context, an emerging concept describing components of variability in the landscape from a species‐specific perspective. Finally, we describe a functional landscape mosaic approach that treats structural and functional features of the landscape and show how these interact to determine the fate of plant populations.  相似文献   

14.

Background and Aims

In this Botanical Briefing we describe how the interactions between plants and their biotic environment can change during range-expansion within a continent and how this may influence plant invasiveness.

Scope

We address how mechanisms explaining intercontinental plant invasions by exotics (such as release from enemies) may also apply to climate-warming-induced range-expanding exotics within the same continent. We focus on above-ground and below-ground interactions of plants, enemies and symbionts, on plant defences, and on nutrient cycling.

Conclusions

Range-expansion by plants may result in above-ground and below-ground enemy release. This enemy release can be due to the higher dispersal capacity of plants than of natural enemies. Moreover, lower-latitudinal plants can have higher defence levels than plants from temperate regions, making them better defended against herbivory. In a world that contains fewer enemies, exotic plants will experience less selection pressure to maintain high levels of defensive secondary metabolites. Range-expanders potentially affect ecosystem processes, such as nutrient cycling. These features are quite comparable with what is known of intercontinental invasive exotic plants. However, intracontinental range-expanding plants will have ongoing gene-flow between the newly established populations and the populations in the native range. This is a major difference from intercontinental invasive exotic plants, which become more severely disconnected from their source populations.  相似文献   

15.
Paul Glaum  John Vandermeer 《Oikos》2021,130(7):1116-1130
Demographic heterogeneity influences how populations respond to density dependent intraspecific competition and trophic interactions. Distinct stages across an organism's development, or ontogeny, are an important example of demographic heterogeneity. In consumer populations, ontogenetic stage structure has been shown to produce categorical differences in population dynamics, community dynamics and even species coexistence compared to models lacking explicit ontogeny. The study of consumer–resource interactions must also consider the ontogenetic stage structure of the resource itself, particularly plants, given their fundamental role at the basis of terrestrial food webs. We incorporate distinct ontogenetic stages of plants into an adaptable multi-stage consumer–resource modeling framework that facilitates studying how stage specific consumers shape trophic dynamics at low trophic levels. We describe the role of density dependent demographic rates in mediating the dynamics of stage-structured plant populations. We then investigate how these demographic rates interact with consumer pressure to influence stability and coexistence in multiple stage-specific consumer–resource interactions. Results detail how density dependent effects across distinct ontogenetic stages in plant development produce non-additivity in the drivers of dynamic stability both in single populations and in consumer–resource settings, challenging the ubiquity of certain traditional ecological dynamic paradigms. We also find categorical differences in the population variability induced by herbivores consuming separate plant stages. Consumer–resource models, such as plant–herbivore interactions, often average out demographic heterogeneity in populations. Here, we show that explicitly including plant demographic heterogeneity through ontogeny yields distinct dynamic expectations for both plants and herbivores compared to traditional consumer–resource formulations. Our results indicate that efforts to understand the demographic effect of herbivores on plant populations may need to also consider the effects of plant demographics on herbivores and the reciprocal relationship between them.  相似文献   

16.
The results obtained during a complex study of soils and plants on mounds located in four subzones of forest steppe and steppe are presented. Having studied the vertical microzoning of the mounds, general and specific features of the distribution of soil properties (based on 40 indicators) have been shown in their geographical, catenary, and expository aspects. Functional changes have been found in the interdependence between soil and plant, which developed as a result of the thousands years of evolution of the ecosystems.  相似文献   

17.
B型烟粉虱对23种寄主植物适应度的评估和聚类分析   总被引:2,自引:0,他引:2  
安新城  郭强  胡琼波 《生态学报》2011,31(11):3150-3155
本文利用前期开发的两个寄主植物适应度评估模型对B型烟粉虱能够完成发育的23种寄主进行了寄主适应度评估,并对评估结果进行了聚类分析,分析结果显示供试烟粉虱种群存在明显的寄主偏好性,黄瓜与甘蓝为嗜好寄主,繁殖力大,若虫成活率高,非常有利于烟粉虱的种群发育;而其它寄主在营养状况、物理性状及次生化合物的综合作用下,烟粉虱的寄主植物适应度变化较大且整体低于嗜好寄主,结果暗示烟粉虱的寄主生态位可能存在从核心到周缘的分层现象。比较了两个评估模型的分析结果,虽然在低层聚类中存在差异,但高层聚类的结果趋于一致。  相似文献   

18.
Actively foraging lizards are capable of identifying prey using only chemical cues sampled by tongue-flicking, and the relatively few omnivorous and herbivorous lizards tested similarly can identify both animal and plant foods from chemical cues. Whether lizards that eat plants respond to cues specific to preferred plant types and whether there is geographic variability in responses to cues from various plants correlated with the importance of those plants in local diets is unknown. In three populations of an omnivorous lacertid, the Balearic lizard Podarcis lilfordi, we studied chemosensory sampling and feeding responses to chemical cues from plant and animal foods presented on cotton swabs. Each lizard population is endemic to one islet off the coast of Menorca, Balearic Islands, Spain. Lizards in all three populations discriminated chemical cues from plant and animal foods from control substances. Our results extend findings of prey chemical discrimination and plant chemical discrimination in omnivores, increasing confidence that correlated evolution has occurred between plant diet and chemosensory response to palatable plants. There were no consistent differences among populations in tongue-flicking and biting responses to stimuli from flowers of syntopic and allopatric plant species. The lizards may respond to cues indicative of palatability in a wide range of plant species rather than exhibiting strong responses only to locally available plant species. Nevertheless, tongue-flicking and biting frequencies varied among plant species, perhaps indicating food preferences. In addition, there were differences among populations in tongue-flick rates, latency to bite, and licking behavior. Licking was observed in only one lizard population as a response to floral chemicals from only one of the plants species tested, raising the possibility of a population-specific linkage between identification of a particular plant species and performance of an appropriate feeding response.  相似文献   

19.
The history of some invasive species is so complex that their origins can be difficult to determine. One example of such invasive species is the California invasive known as “wild artichoke thistle” (Cynara cardunculus var. sylvestris), found in natural and disturbed ecosystems. Wild artichoke thistle is a Mediterranean native and the progenitor of two domesticated horticultural taxa, artichoke and cardoon. Different hypotheses regarding the origins of California plants have included introductions by 19th century Italian immigrants and the de-domestication (evolutionary reversion to wild-type morphology) of feral (escaped, free-living) cultivars. Using microsatellite markers, we compared the genetic constitutions of 12 artichoke thistle populations in California with possible progenitor populations: 17 Spanish and Italian wild populations and eight different artichoke and cardoon cultivars. Each California population was compared with its putative progenitors using STRUCTURE analysis. Our results suggest that California's artichoke thistle populations are polyphyletic. Surprisingly, two-thirds of California's populations closely matched populations from the Iberian Peninsula. Three populations matched domesticated artichoke. One population appears to have wild and cultivar hybrid ancestry. Alleles specific to Italian populations were found at low frequencies in some California plants, suggesting that Italian wild plants may have been in California, but have left a trivial genetic legacy. Given that the de-domesticated plants in this study appear to be as invasive as the wild taxon, we conclude with a discussion of the role that ferality and de-domestication may have in plant invasions.  相似文献   

20.
Genetic mapping and sequencing of plant genomes have been useful for investigating eukaryotic chromosome structural organization. In many cases, analyses have been limited in the number of representatives sampled from specific groups. The degree of intraspecific genome diversity remains in question. The possibility exists that a single model genome may have limited utility for identifying genes in related members of the species or genus. Crop improvement programs have particular interests in disease resistance genes that are harbored by wild relatives of modern cultivated crops. These genes are evolutionarily dynamic and under selective pressure by a broad range of pathogenic organisms. Using resistance gene analogs as models for gene evolution, intraspecific genome comparisons were made among populations of wild diploid wheat (Aegilops tauschii). We observed that deletion haplotypes are occurring frequently and independently in the genome. Haplotypes are geographically correlated and maintenance of gene complements in localized populations indicates selective advantage. Furthermore, deletion haplotypes are not detrimental to plant health, since genes without adaptive value in alternate environments are eliminated from the genome. Deletion haplotypes appear to be a common form of allelic variation in plants, and we address the consequences on genome restructuring and gene evolution. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号