首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
间断下体负压暴露方式对下体负压耐力的影响   总被引:1,自引:0,他引:1  
目的:探讨不同方式反复下体负压锻炼对下体负压耐力的影响,以期筛选最佳的负压锻炼方式。方法:27名男性健康受试者随机分成3组,分别进行-5.33kPa8min(A组)、6.67kPa4min(B组)、6.67kPa8min(C组)的下体负压锻炼后累积应激指数(CSI)、总耐受时间(DNP)较锻炼前显著提高,A、B组上述指标无显著变化,下体负压暴露时的心率较平静状态显著升高,收缩压显著降低,舒张压无显著变化。结论:经过-6.67kPa/d8min连续8d的间断下体负压可以显著提高下体负压耐力。  相似文献   

2.
We compared changes in muscle sympathetic nerve activity (SNA) during graded lower body negative pressure (LBNP) and 450 ml of hemorrhage in nine healthy volunteers. During LBNP, central venous pressure (CVP) decreased from 6.1 +/- 0.4 to 4.5 +/- 0.5 (LBNP -5 mmHg), 3.4 +/- 0.6 (LBNP -10 mmHg), and 2.3 +/- 0.6 mmHg (LBNP -15 mmHg), and there were progressive increases in SNA at each level of LBNP. The slope relating percent change in SNA to change in CVP during LBNP (mean +/- SE) was 27 +/- 11%/mmHg. Hemorrhage of 450 ml at a mean rate of 71 +/- 5 ml/min decreased CVP from 6.1 +/- 0.5 to 3.7 +/- 0.5 mmHg and increased SNA by 47 +/- 11%. The increase in SNA during hemorrhage was not significantly different from the increase in SNA predicted by the slope relating percent change in SNA to change in CVP during LBNP. These data show that nonhypotensive hemorrhage causes sympathoexcitation and that sympathetic responses to LBNP and nonhypotensive hemorrhage are similar in humans.  相似文献   

3.
Lower body negative pressure (LBNP) is an established and important technique used to physiologically stress the human body, particularly the cardiovascular system. LBNP is most often used to simulate gravitational stress, but it has also been used to simulate hemorrhage, alter preload, and manipulate baroreceptors. During experimentation, the consequences of LBNP and the reflex increases in heart rate and blood pressure can be manipulated and observed in a well-controlled manner, thus making LBNP an important research tool. Numerous laboratories have developed LBNP devices for use in research settings, and a few devices are commercially available. However, it is often difficult for new users to find adequately described design plans. Furthermore, many available plans require sophisticated and expensive materials and/or technical support. Therefore, we have created an affordable design plan for a LBNP chamber. The purpose of this article was to share our design template with others. In particular, we hope that this information will be of use in academic and research settings. Our pressure chamber has been stress tested to 100 mmHg below atmospheric pressure and has been used successfully to test orthostatic tolerance and physiological responses to -50 mmHg.  相似文献   

4.
5.
6.
7.
Orthostatic intolerance follows actual weightlessness and weightlessness simulated by bed rest. Orthostasis immediately after acute exercise imposes greater cardiovascular stress than orthostasis without prior exercise. We hypothesized that 5 min/day of simulated orthostasis [supine lower body negative pressure (LBNP)] immediately following LBNP exercise maintains orthostatic tolerance during bed rest. Identical twins (14 women, 16 men) underwent 30 days of 6 degrees head-down tilt bed rest. One of each pair was randomly selected as a control, and their sibling performed 40 min/day of treadmill exercise while supine in 53 mmHg (SD 4) [7.05 kPa (SD 0.50)] LBNP. LBNP continued for 5 min after exercise stopped. Head-up tilt at 60 degrees plus graded LBNP assessed orthostatic tolerance before and after bed rest. Hemodynamic measurements accompanied these tests. Bed rest decreased orthostatic tolerance time to a greater extent in control [34% (SD 10)] than in countermeasure subjects [13% (SD 20); P < 0.004]. Controls exhibited cardiac stroke volume reduction and relative cardioacceleration typically seen after bed rest, yet no such changes occurred in the countermeasure group. These findings demonstrate that 40 min/day of supine LBNP treadmill exercise followed immediately by 5 min of resting LBNP attenuates, but does not fully prevent, the orthostatic intolerance associated with 30 days of bed rest. We speculate that longer postexercise LBNP may improve results. Together with our earlier related studies, these ground-based results support spaceflight evaluation of postexercise orthostatic stress as a time-efficient countermeasure against postflight orthostatic intolerance.  相似文献   

8.
9.
10.
The Czech Air-Force prepares an introduction of a new generation of aircraft with high maneuvering possibilities. The possibility of making full use of the aircraft flight properties assumes sufficient pilot's +Gz tolerance and also its improvement during the new flight training system. The optimal method to achieve this purpose is the human centrifuge utilization. For the Czech Republic, the building or the renting of a human centrifuge for the pilot's selection is unfortunately very expensive. In our institute we are interested in the analysis of the possibilities of the lower body negative pressure (LBNP) technique for the basic pilot's selection with low level of +Gz tolerance, using the examination of the orthostatic cardiovascular reactions of the pilot's organism.  相似文献   

11.
In view of conflicting reports of skeletal muscle and skin blood flow participation in baroreceptor-mediated reflexes, we studied the effects of graded lower body negative pressure (LBNP) on cutaneous and muscular components of forearm blood flow (FBF) in seven male subjects at 28 degrees C. FBF was measured by venous occlusion plethysmography and cutaneous flow by laser-Doppler velocimetry, the difference being the muscular flow. Mean FBF decreased by 39 and 56% from control at LBNP of 20 and 50 Torr, respectively. Skin flow decreased linearly with graded LBNP contributing 32% of the decrease of total blood flow at 20 Torr and then 50% of total decrease of blood flow at 50 Torr. Conversely, the decrease in muscle flow represented 68% of the total decrease at LBNP of 20 Torr and then 50% of the total decrease at LBNP of 50 Torr. We concluded that both skin and muscle circulations participate in sustained peripheral vasoconstriction during LBNP, with muscle flow achieving near maximum vasoconstriction by 20 Torr and skin showing a graded vasoconstriction to decreases in LBNP.  相似文献   

12.
13.
14.
15.
Changes in body core temperature (T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature (T a) of 20 °C or (2) 35 °C, and (3)T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal (T re), tympanic (T ty) and esophageal (T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls inT cor s under conditions (1) and (3), but loweredT cor s very slightly under conditions (2) and (4). The changes inT es were always more rapid and greater than those ofT ty andT re. The falls inT ty andT re appeared to be explained by changes in heat balance, whereas the sharp drop ofT es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall inT cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed thatT es may not be an appropriate indicator forT cor when venous return changes rapidly.  相似文献   

16.
Cardiac responses to dynamic leg exercise at 0, 50, and 100 W in the supine position were investigated with and without the lower portion of the body exposed to a pressure of -6.6 kPa (Lower Body Negative Pressure, LBNP). Resting values for heart rate (HR) and stroke volume (SV) were considerably higher and lower, respectively, during LBNP than in the control condition. At the transition from rest to the mildest exercise during LBNP SV showed a prompt increase by about 40%, but no significant change in the control condition. HR, which increased by 17 beats X min-1 in the control condition, showed during LBNP no change initially and subsequently a small but significant drop below its resting value. Steady-state values for HR at the various levels of exercise were not significantly affected by LBNP, whereas corresponding values for SV were considerably lowered, so that exercise values for cardiac output were about 3 l X min-1 less during LBNP than in the control condition. The reductions in SV and cardiac output indicate residual pooling of blood in intra- and extramuscular capacitance vessels of the legs. With a change from rest to exercise at 100 W during LBNP mean systolic ejection rate (MSER) increased by 67%, the relations between SV and MSER suggesting that ventricular performance was maintained by a combination of the Frank-Starling mechanism and enhanced contractile strength.  相似文献   

17.
18.
19.
20.
Noninvasive skin microcirculation measurements based on a new Near Infrared sensor technique (NIR/Fa. Silicon Sensor GmbH; Berlin) were embeded in a tilt table experiment for simulation of acute effects of weightlessness (HDT -6 degrees) and active standing with the Russian Tschibis-LBNP device. The phenomenon of orthostatic intolerance depends on complex interactions among functional characteristics of central and peripheral cardiovascular control. The purpose of this study was to assess the blood volume and flow motion changes as well as pulsatile spectral pattern during orthostatic and antiorthostatic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号