首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

2.
1. The reactivity of the zinc site of bovine superoxide dismutase has been probed by observing optical and electron paramagnetic resonance changes, under several conditions, of the Co(II)-substituted protein. 2. Only in the absence of copper are the optical and electron paramagnetic resonance spectra of the cobalt chromophore appreciably affected by alkaline pH or by cyanide. With both reagents the reaction with the copper-containing protein appears to involve the water molecule bound to the copper and does not affect the magnetic coupling between copper and cobalt. 3. The reaction of cyanide with the copper-free Co(II) protein leads to a slow detachment of cobalt from the protein as pentacyanocobalt. An oxygen adduct forms in air, analogous to that described in Co(II) carbonic anhydrase (Haffner, P. H. and Coleman, J. E. (1975) J. Biol. Chem. 250, 996--1005.) 4. Acid titration modifies the Co(II) spectra in the same way in the Cu-containing and in the Cu-free protein and brings about uncoupling of the Co(II)--Cu(II) system. Protonation of histidine-61 on the zinc facing nitrogen is suggested. 5. H2O2 modifies the cobalt chromophore only in the presence of copper. Magnetic coupling between Cu(II) and Co(II) seems to be still present after H2O2 inactivation of the enzyme.  相似文献   

3.
Silver-copper and silver-cobalt proteins have been prepared in which Ag+ resides in the native copper site of superoxide dismutase and either Cu2+ of Co2+ reside in the zinc site. The electron paramagnetic resonance (EPR) spectrum of the copper and the visible absorption spectrum of the cobalt greatly resemble those of either Cu4 of Cu2,Cu2,Co2 proteins, respectively, in which the copper of the native copper sites has been reduced. It was found that, unlike cyanide, azide anion would not perturb the EPR spectrum of Ag2,Cu2 protein. Since azide produces the same perturbation upon the EPR spectrum of native and Cu2 proteins, it must bind to the copper and not the zinc of superoxide dismutase. A model of the metal sites of the enzyme has been fitted to a 3-A electron-density map using an interactive molecular graphics display. The model shows that histidine-61, which appears to bind both copper and zinc, does not lie in the plane of the copper and its three other histidine ligands, but occupies a position intermediate between planar and axial. This feature probably accounts for the rhombicity of the EPR spectrum and the activity of the enzyme.  相似文献   

4.
The removal of cobalt from cobalt(II) bovine carbonic anhydrase by pyridine-2-carboxylate, pyridine-2,6-dicarboxylate and 5-methyl-1,10-phenanthroline occurs via formation of an intermediate. This is presumed to be a ternary adduct of cobalt(II) enzyme with the ligand. In this, metal-protein bonds are loosened, probably via distortion of the normal geometry, resulting in accelerated breakdown of the adduct to apoprotein, compared with the behavior of the cobalt(II) enzyme alone. With 2-carboxy-1,10-phenanthroline, removal of metal is very rapid but no adduct is observed. Values of stability constants of the adducts and rate constants for their decomposition to apoprotein and their formation from apoprotein and cobalt(II) complex were measured at pH 5.5 and 25°C. Formation and dissociation rate constants for the adduct of cobalt carbonic anhydrase with pyridine-2,6-dicarboxylate could be measured from pH 5 to 7 and 10° to 25°C by stopped flow. Values of thermodynamic parameters for the various reactions agreed well with those estimated from the kinetic data.  相似文献   

5.
Co(II)-glyoxalase I has been prepared by reactivation of apoenzyme from human erythrocytes with Co2+. The visible absorption spectrum showed maxima at 493 and 515 nm and shoulders at 465 and 615 nm. The absorption coefficients at 493 and 515 nm were 35 and 33 M-1 cm-1/cobalt ion, respectively; i.e. 70 and 66 M-1 cm-1 for the dimeric metalloprotein. The product of the enzymatic reaction, S-D-lactoylglutathione, although binding to Co(II)-glyoxalase I, had no demonstrable effect on the visible absorption spectrum, indicating binding outside the first coordination sphere of the metal. The EPR spectrum at 3.9 K was characterized by g1 approximately 6.6, g2 approximately 3.0, and g3 approximately 2.5, and eight hyperfine lines with A1 = 0.025 cm-1. Binding of the strong competitive inhibitor S-p-bromobenzylglutathione to Co(II)-glyoxalase I gave three g values: 6.3, 3.4, and 2.5, indicating a conformational change affecting the environment of the metal ion. Both optical and EPR spectra strongly suggest a high spin Co2+ with octahedral coordination in the active site of the enzyme. The similarities in kinetic properties between native Zn(II)-glyoxalase I and enzyme substituted with Mg2+, Mn2+, or Co2+ is consistent with the view that these enzyme forms have the same metal coordination in the protein.  相似文献   

6.
Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD were studied by potentiometric and spectroscopic (UV-Vis, CD and EPR) techniques. The results reveal that both ligands have effective metal binding sites, but the tripeptide is a much stronger complexing agent than the tetrapeptide. The formation of a macrochelate via the coordination of the imidazolyl residues is suggested in the copper(II)-Ac-HisValHis-NH2 system in the acidic pH range, while a 4N complex predominates at physiological pH. The interaction of Ac-HisValHis-NH2 with zinc(II) results in the formation of a precipitate indicating polynuclear complex formation. Both copper(II)-Ac-HisValHis-NH2 and copper(II)-HisValHis systems exhibit catalytic activity toward the dismutation of superoxide anion at physiological pH, but the saturated coordination sphere of the metal ions in both systems results in low reactivity as compared to the native enzyme.  相似文献   

7.
C Rüegg  K Lerch 《Biochemistry》1981,20(5):1256-1262
The antiferromagnetically spin-coupled copper(II) pair in Neurospora tyrosinase was substituted by cobalt, yielding a stoichiometry of 2 mol of Co/mol of protein. The low magnitude of the high-spin Co(II) EPR signal indicates spin coupling of the two Co(II) ions similar to that observed in the native enzyme. The absorption spectrum with four transitions in the visible region of intermediate intensity (epsilon 607(670), epsilon 564(630), epsilon 526(465)), a shoulder at 635 nm, and the near-infrared bands at 1180 (epsilon 30) and 960 nm (epsilon 15) indicate tetrahedral coordination around the Co(II) center. The cobalt(II) tyrosinase is enzymatically inactive, and there is no evidence that it binds molecular oxygen. Upon addition of cyanide or the competitive tyrosinase inhibitors L-mimosine, benzoic acid, or benzhydroxamic acid te absorption spectrum changes in a characteristic manner. This optical perturbation shows that binding of these inhibitors (and presumably of the substrates) occurs at or near the metal site. One Co(II) ion can be removed preferentially by incubation with KCN at high pH, indicating the two ions not to be in an identical environment.  相似文献   

8.
The interaction of copper(II), nickel(II) and cobalt(II) ions with oxidized glutathione in aqueous solutions have been examined by spectroscopic methods. Cu(II) is the only ion which interacts with disulphide bridge and forms dimeric species containing the Cu(II)-S-S-Cu(II) unit. Ni(II) and Co(II) bind mainly with the terminal NH2 and COO- groups of glutamic acid, and the complexes formed are of nearly octahedral symmetry. At high pH, in the Co(II)-GSSG solution Co(II) is oxidized to Co(III) with the concomitant reduction of GSSG to GSH. Considerable differences were observed between the oxidized and reduced form of glutathione in the coordination ability towards metal ions.  相似文献   

9.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

10.
Insertion of nickel ions into the empty catalytic site of horse liver alcohol dehydrogenase yields an active enzyme with 65% metal substitution and about 12% intrinsic activity. The electronic absorption spectrum is characterized by bands at 357 nm (2900 M?1 cm?1, 407 nm (3500 M?1 cm?1), 505 nm (300 M?1 cm?1), 570 nm (?130 M?1 cm?1), and 680 nm (?80 M?1 cm?1). The absorption and CD spectra are similar to those of nickel(II) azurin and nickel(II) aspartate transcarbamoylase and prove coordination of the nickel(II) ions to sulfur in a distorted tetrahedral coordination geometry. Changes of the spectra upon ligand binding at the metal or conformation changes of the protein induced by coenzyme, or both, indicate alterations of the metal geometry.The chromophoric substrate trans-4-(N, N-dimethylamino)-cinnamaldehyde forms a ternary complex with Ni(II) liver alcohol dehydrogenase and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide, stable between pH 6 and 10. The corresponding ternary complex with NADH is only stable at pH > 9.0. The spectral redshifts induced in the substrate are 11 nm larger than those found in the zinc enzyme. We suggest direct coordination of the substrate to the catalytic metal ion which acts as a Lewis acid in both substrate coordination and catalysis.  相似文献   

11.
Investigations of metal-substituted human lactoferrins by fluorescence, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy confirm the close similarity between lactoferrin and serum transferrin. As in the case of Fe(III)- and Cu(II)-transferrin, a significant quenching of apolactoferrin's intrinsic fluorescence is caused by the interaction of Fe(III), Cu(II), Cr(III), Mn(III), and Co(III) with specific metal binding sites. Laser excitation of these same metal-lactoferrins produces resonance Raman spectral features at ca. 1605, 1505, 1275, and 1175 cm-1. These bands are characteristic of tyrosinate coordination to the metal ions as has been observed previously for serum transferins and permit the principal absorption band (lambda max between 400 and 465 nm) in each of the metal-lactoferrins to be assigned to charge transfer between the metal ion and tyrosinate ligands. Furthermore, as in serum transferrin the two metal binding sites in lactoferrin can be distinguished by EPR spectroscopy, particularly with the Cr(III)-substituted protein. Only one of the two sites in lactoferrin allows displacement of Cr(III) by Fe(III). Lactoferrin is known to differ from serum transferrin in its enhanced affinity for iron. This is supported by kinetic studies which show that the rate of uptake of Fe(III) from Fe(III)--citrate is 10 times faster for apolactoferrin than for apotransferrin. Furthermore, the more pronounced conformational change which occurs upon metal binding to lactoferrin is corroborated by the production of additional EPR-detectable Cu(II) binding sites in Mn(III)-lactoferrin. The lower pH required for iron removal from lactoferrin causes some permanent change in the protein as judged by altered rates of Fe(III) uptake and altered EPR spectra in the presence of Cu(II). Thus, the common method of producing apolactoferrin by extensive dialysis against citric acid (pH 2) appears to have an adverse effect on the protein.  相似文献   

12.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

13.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

14.
The 1H NMR spectra of the cyanide adduct of Cu2Co2-superoxide dismutase have been remeasured at pH 7.5. The exchange rate of CN- is slow on the NMR time scale. The correlation with the spectrum of the unligated enzyme has been established through saturation-transfer techniques of the system in which 50% of the cyanide adduct is formed and through comparison with the spectrum of a Cu2Co2-superoxide dismutase-CN- sample in which the histidines have been deuterium labeled at the position epsilon 1. The similarities between the spectra of the CN- and N-3 derivatives are stressed, in particular with respect to the removal from copper coordination of the same histidine, assigned as His-46.  相似文献   

15.
Adduct I (lambda(max) at approximately 430 nm) formed in the reaction of 2-hydrazinopyridine (2HP) and the TPQ cofactor of wild-type Escherichia coli copper amine oxidase (WT-ECAO) is stable at neutral pH, 25 degrees C, but slowly converts to another spectroscopically distinct species with a lambda(max) at approximately 530 nm (adduct II) at pH 9.1. The conversion was accelerated either by incubation of the reaction mixture at 60 degrees C or by increasing the pH (>13). The active site base mutant forms of ECAO (D383N and D383E) showed spectral changes similar to WT when incubated at 60 degrees C. By contrast, in the Y369F mutant adduct I was not stable at pH 7, 25 degrees C, and gradually converted to adduct II, and this rate of conversion was faster at pH 9. To identify the nature of adduct II, we have studied the effects of pH and divalent cations on the UV-vis and resonance Raman spectroscopic properties of the model compound of adduct I (2). Strikingly, it was found that addition of Cu2+ to 2 at pH 7 gave a product (3) that exhibited almost identical spectroscopic signatures to adduct II. The X-ray crystal structure of 3 shows that it is the copper-coordinated form of 2, where the +2 charge of copper is neutralized by a double deprotonation of 2. These results led to the proposal that adduct II in the enzyme is TPQ-2HP that has migrated onto the active site Cu2+. The X-ray crystal structure of Y369F adduct II confirmed this assignment. Resonance Raman and EPR spectroscopy showed that adduct II in WT-ECAO is identical to that seen in Y369F. This study clearly demonstrates that the hydrogen-bonding interaction between O4 of TPQ and the conserved Tyr (Y369) is important in controlling the position and orientation of TPQ in the catalytic cycle, including optimal orientation for reactivity with substrate amines.  相似文献   

16.
A Cu,Co derivative of the Cu,ZnSOD from Photobacterium leiognathi, in which cobalt has been selectively substituted for zinc, has been prepared and spectroscopically investigated. The derivative shows three bands in the visible region at 530, 566, and 600 nm when copper is in the oxidized state. Reduction or depletion of the copper ion produce a shift of the band absorbing at 600 to 590 nm because of the detachment from copper of the imidazolate bridging the two metals when copper is in the oxidized state. Numerous isotropically shifted 1H NMR lines are observed when copper is oxidized, confirming the presence of the imidazolate bridge between the two metals. Comparison of the optical and the NMR spectra with those observed for the eukaryotic enzyme reveals the occurrence of slight but unambiguous differences diagnostic of a different degree of distortion of the metal cluster between the prokaryotic and eukaryotic enzymes.  相似文献   

17.
Dipeptidyl peptidase III (DPP III) (EC 3.4.14.4), which has a HELLGH-E (residues 450-455, 508) motif as the zinc binding site, is classified as a zinc metallopeptidase. The zinc dissociation constants of the wild type, Leu(453)-deleted, and E508D mutant of DPP III at pH 7.4 were 4.5 (+/-0.7) x 10(-13), 5.8 (+/-0.7) x 10(-12), and 3.2 (+/-0.9) x 10(-10) M, respectively. The recoveries of the enzyme activities by the addition of various metal ions to apo-DPP III were also measured, and Co(2+), Ni(2+), and Cu(2+) ions completely recovered the enzyme activities as did Zn(2+). The dissociation constants of Co(2+), Ni(2+), and Cu(2+) ions for apo-DPP III at pH 7.4 were 8.2 (+/-0.9) x 10(-13), 2.7 (+/-0.3) x 10(-12), and 1.1 (+/-0.1) x 10(-14) M, respectively. The shape of the absorption spectrum of Co(2+)-DPP III was very similar to that of Co(2+)-carboxypeptidase A or Co(2+)-thermolysin, in which the Co(2+) is bound to two histidyl nitrogens, a water molecule, and a glutamate residue. The absorption spectrum of Cu(2+)-DPP III is also very similar to that of Cu(2+)-thermolysin. The EPR spectrum and the EPR parameters of Cu(2+)-DPP III were very similar to those of Cu(2+)-thermolysin but slightly different from those of Cu(2+)-carboxypeptidase A. The five lines of the superfine structure in the perpendicular region of the EPR spectrum in Cu(2+)-DPP III suggest that nitrogen atoms should coordinate to the cupric ion in Cu(2+)-DPP III. All of these data suggest that the donor set and the coordination geometry of the metal ions in DPP III, which has the HExxxH motif as the metal binding site, are very similar to those of the metal ions in thermolysin, which has the HExxH motif.  相似文献   

18.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(I) per CopZ and two copper(I) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(I)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(I)2CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(I)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper, from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(I) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange; a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.  相似文献   

20.
The interfering effects of copper, zinc, and cobalt on the uptake of mugineic acid-ferric complex were studied in barley ( Hordeum vulgare , cv. Minorimugi) grown in nutrient solution. Short-term uptake experiments of 3 h were performed utilizing both ionic and mugineic acid-complex forms of each metal at two different concentrations. Copper was most effective in decreasing iron uptake when added in an ionic form at either concentration. The inhibition order at higher concentrations followed Cu(II) > Zn(II) ≥ Co(II), Co(III), which is consistent with the stability constants of these metal complexes with mugineic acid. The displacement of iron from its mugineic acid complex by these metals is suggested as a probable explanation for the decreased iron uptake. The inhibitory effect of metal complexes with mugineic acid on iron uptake was only found in cases with higher concentrations of Cu(II) and Zn(II) complexes. Deformation of the specific iron transport system in the plasma membrane due to their adsorption may be responsible for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号