首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular calcium transients were resolved within the time course of single contraction cycles in rabbit left atrium using tetramethylmurexide (2 mM) as the calcium-sensitive dye (150-250 microM total calcium, 80-150 microM free calcium). Net extracellular calcium depletion began within 2-4 ms upon excitation; over the following 5-20 ms, depletion continued steeply and amounted to 0.2 mumol/kg wet weight X 10 ms (135 microM free extracellular calcium). In regularly excited muscles (0.5-2 Hz), net depletion slowed rapidly and stopped early during the rise of contractile motion monitored by transmitted light. Maximum depletions amounted to 0.2-0.5% of total extracellular calcium (0.2-0.5 mumol/kg wet weight with 135 microM free calcium). Replenishment of extracellular calcium began at the latest midway to the peak of the motion signal. Calcium replenishment could be complete for the most part by an early phase of relaxation or could take place continuously through relaxation. The maximal net depletion per beat decreased manyfold with a decrease of frequency from 1 to 0.05 Hz. During paired pulse stimulation (200-300-ms twin pulse separation at basal rates of 0.3-1 Hz), extracellular calcium accumulation was enhanced at the initial potentiated contraction; extracellular calcium depletion was prolonged at the low-level premature contraction. With quadruple stimulation (three premature excitations), the apparent rate of net extracellular calcium accumulation at potentiated contractions approached or exceeded the apparent rate of early net calcium depletion. Under the special circumstance of a strongly potentiated post-stimulatory contraction after greater than 5 s rest, repolarization beyond -40 mV occurred within 10 ms, net extracellular calcium accumulation began with the onset of muscle motion, and net extracellular calcium accumulation (1-3 microM/kg wet weight) coincided with a more positive late action potential in comparison with subsequent action potentials. Consistent changes of the apparent rate of early net calcium depletion were not found with any of the simulation patterns examined. In ryanodine-pretreated atria, the duration of depletion was clearly limited by action potential duration at post-rest stimulations; in the presence of 4-aminopyridine (2 mM), depletion continued essentially undiminished for up to 200 ms. The resulting net depletion magnitudes were greater than 10 times larger than the transient depletions found during steady stimulation.  相似文献   

2.
Interactions of electrogenic sodium-calcium exchange, calcium channel and sarcoplasmic reticulum in the mammalian heart have been explored by simulation of extracellular calcium transients measured with tetramethylmurexide in rabbit atrium. The approach has been to use the simplest possible formulations of these mechanisms, which together with a minimum number of additional mechanisms allow reconstruction of action potentials, intracellular calcium transients and extracellular calcium transients. A 3:1 sodium-calcium exchange stoichiometry is assumed. Calcium-channel inactivation is assumed to take place by a voltage-dependent mechanism, which is accelerated by a rise in intracellular calcium; intracellular calcium release becomes a major physiological regulator of calcium influx via calcium channels. A calcium release mechanism is assumed, which is both calcium- and voltage-sensitive, and which undergoes prolonged inactivation. 200 microM cytosolic calcium buffer is assumed. For most simulations only instantaneous potassium conductances are simulated so as to study the other mechanisms independently of time- and calcium-dependent outward current. Thus, the model reconstructs extracellular calcium transients and typical action-potential configuration changes during steady-state and non-steady-state stimulation from the mechanisms directly involved in trans-sarcolemmal calcium movements. The model predicts relatively small trans-sarcolemmal calcium movements during regular stimulation (ca. 2 mumol kg-1 fresh mass per excitation); calcium current is fully activated within 2 ms of excitation, inactivation is substantially complete within 30 ms, and sodium-calcium exchange significantly resists repolarization from approximately -30 mV. Net calcium movements many times larger are possible during non-steady-state stimulation. Long action potentials at premature excitations or after inhibition of calcium release can be supported almost exclusively by calcium current (net calcium influx 5-30 mumol kg-1 fresh mass); action potentials during potentiated post-stimulatory contractions can be supported almost exclusively by sodium-calcium exchange (net calcium efflux 4-20 mumol kg-1 fresh mass). Large calcium movements between the extracellular space and the sarcoplasmic reticulum can take place through the cytosol with virtually no contractile activation. The simulations provide integrated explanations of electrical activity, contractile function and trans-sarcolemmal calcium movements, which were outside the explanatory range of previous models.  相似文献   

3.
An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca2+ (1.25 up to 11.25 mM) to force generation at 25 degrees C (acclimation temperature), 15 and 35 degrees C. The post-rest tension and force-frequency relationship were conducted with and without 10 microM ryanodine in the bathing medium. Increments in extracellular Ca2+ resulted in increases in twitch force development only at 35 degrees C. A significant post-rest potentiation was recorded for the control preparations at 25 degrees C (100% to 119.8+/-4.1%). However, this post-rest potentiation was inhibited by ryanodine only at 25 degrees C (100% to 97.6+/-1.5%). At 35 degrees C, force remained unchanged in the control preparations, but a significant post-rest decay was recorded in the presence of ryanodine (100% to 76.6+/-4.6%) while at 15 degrees C, ryanodine was not able to preventing the post-rest potentiation observed in the control preparations. The increases in the imposed contraction frequency caused a decline of the force at 25 and 35 degrees C and ryanodine decreased significantly peak tension at both temperatures. The findings suggest a high or medium calcium turnover, possibly related to the presence of a functional SR, whose functionality is diminished when temperature is decreased.  相似文献   

4.
In isolated papillary muscles of guinea-pig hearts, the inotropic effects of bivalent cations, Ca2+, Ba2+, Sr2+, and Ni2+, were investigated during post-rest adaptation in order to study their individual action on excitation-contraction coupling. Upon exposure to each cation studied, the force of contraction was transiently enhanced, whereas the steady state force was influenced differently: it increased with Ca2+, Ba2+ and Sr2+ and was depressed by Ni2+. The transmembrane action potentials (measured at 90% repolarization) were slightly prolonged by Sr2+ and even more by Ba2+, and were shortened by Ca2+ and Ni2+. After 10 min rest, the post-rest contractions consisted of a late peak (PII) that was enhanced in high Ca2+-solution an by Sr2+. Ni2+ and Ba2+ depressed PII and during adaptation to pre-rest controls an early peak of contraction (PI) prevailed. There was no simple relation between post-rest adaptation of force and the duration of action potential in the presence of the bivalent cations tested. During post-rest adaptation the two components of contraction can be separated. The results are interpreted in terms of a model of excitation-contraction coupling which derives Ca ions for contractile activation from two sources: transmembrane calcium influx and calcium release from cellular stores. From the different effects on post-rest adaptation it is concluded that the individual cations influence excitation-contraction coupling more specifically and not merely by "screening-off" the negative surface charges.  相似文献   

5.
We studied the pattern of post-rest activation and shifts of 45Ca in the isolated mammalian atrial muscle. The first contraction evoked in the rabbit and guinea-pig atrial muscle after 10 min rest was several times stronger than the steady-state beats at a rate of 60/min. Contractile force (CF) declined to 20-50% of control during the next 1-3 beats and recovered to the pre-rest level upon subsequent stimulation. The post-rest beats were negligibly affected by noradrenaline (NA), isoproterenol (IS) acetylcholine (ACh), carbachol (CCh) and Ni, whereas the steady-state beats were readily affected by all these drugs or ions. Post-rest potentiation was completely inhibited by caffeine in a concentration of 10 mM. The guinea-pig atria, equilibrated for 60 min in 45Ca containing solution and stimulated at a rate of 60/min, contained 4.47 +/- 0.16 mmol 45Ca/kg wet weight (w.w.). Ten min of rest resulted in a drop of this content to 3.52 +/- 0.13 mmol/kg w.w. despite the continued presence of 45Ca in the superfusing solution. Three initial post-rest beats resulted in further drop of the content of 45Ca to 2.62 +/- 0.14 mmol/kg w.w. Continued post-rest stimulation resulted in a recovery of the pre-rest 45Ca content. This recovery was inhibited by ACh and CCh. Both drugs inhibited 45Ca loss during the initial 3 beats. Neither this loss nor recovery were affected by IS. It is concluded that calcium (Ca) fraction described in the previous papers [11, 15] as Ca2 in the guinea-pig ventricular muscle plays an important role in the force-frequency relations also in the atrial muscle. However, unlike in ventricular muscle only about half of it is released from the cells upon rest whereas the remaining Ca is taken up by the release compartment and used to activate the strong post-rest contraction. It is thereafter extruded from the cells which results in severe depletion of intracellular Ca stores. Fraction Ca2 is re-accumulated during the post-rest stimulation resulting in recovery of the contractile force.  相似文献   

6.
When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa.  相似文献   

7.
The effects of the novel HSP-coinducer bimoclomol was studied on action potentials, ionic currents and [Ca2+]i transients in isolated canine ventricular myocytes using conventional microelectrode techniques and whole cell voltage clamp combined with fluorescent [Ca2+]i measurements. Contractility was studied in right ventricular trabeculae. All preparations were paced with a frequency of 0.2 Hz. Bimoclomol (100 microM) shortened action potential duration measured at 50% repolarization, but lengthened action potentials at the 90% repolarization level, decreased action potential amplitude and maximum depolarization velocity in a reversible manner. In voltage clamped myocytes, the drug activated a steady-state outward current at positive membrane potentials leaving the peak inward current unaffected. [Ca2+]i transients, measured under voltage clamp control, were increased in amplitude and had accelerated decay kinetics in the presence of the compound, in addition to reduction of diastolic [Ca2+]i. Bimoclomol significantly decreased the force of contraction in right ventricular trabeculae. Comparison of present data to previous results indicate that the cardiac effects of bimoclomol strongly depend on actual experimental conditions. The reduced contractility in spite of the increased amplitude of [Ca2+]i transients suggests that 100 microM bimoclomol may decrease calcium sensitivity of the contractile apparatus.  相似文献   

8.
The extracellular free [Ca++] in frog ventricular muscle strips was monitored using single-barrel calcium ion-selective microelectrodes. During trains of repetitive stimulation, a heart rate-dependent, sustained fall (depletion) of the extracellular free [Ca++] occurs, which is most likely a consequence of net Ca++ influx into ventricular cells. The magnitude of the [Ca++]0 depletion increases for higher Ringer's solution [Ca++], and is reversibly blocked by manganese ion. Prolonged repetitive field stimulation (20-30 min) activates additional cellular Ca++ efflux, which can balance the additional Ca++ influx caused by stimulation, resulting in abolition of extratrabecular [Ca++]0 depletion in 20-30 min, and hence zero net transmembrane Ca++ flux at steady state. In the poststimulation period of quiescence, cellular Ca++ efflux persists and causes an elevation (accumulation) of the extracellular free [Ca++]. From these [Ca++]0 depletions, quantitative estimates for the net transmembrane Ca++ flux were derived using an analytical solution to the diffusion equation. In the highest Ringer's solution [Ca++] used (1 mM) the calculated net increase of the total intracellular calcium per beat was 6.5 +/- 1.4 mumol/l of intracellular space. This corresponds to an average net transmembrane Ca++ influx of 0.81 +/- 0.17 pmol/cm2/s during the 800-ms action potential. In lower bath [Ca++] the net transmembrane [Ca++] flux was proportionately reduced.  相似文献   

9.
The effects of 50 microM lanthanum (La3+) on the contractile force, rate and coronary flow of rat hearts perfused with solutions containing 2.5, 5, 7.5 mM calcium (Ca2+) have been investigated. La3+ produced a rapid and marked decrease in contractile force within 1-3 min ("early La(3+)-effect"). The inhibition of contractility by La3+ was reduced progressively when the Ca2+ ion concentration in the perfusion fluid was raised from 2.5 to 7.5 mM. However, after 10-80 min of La3+ perfusion the contractile force was increased significantly ("late La(3+)-effect"). Elevation of Ca2+ during exposure to La3+ increased its effect. During the late La(3+)-effect, a marked decrease in heart rate and a significant increase in time to reach peak tension, time for half relaxation and twitch duration was observed. High concentrations of perfusate Ca2+ decreased the chronotropic response to La3+, in contrast, elevated Ca2+ potentiated La(3+)-induced increase in time to reach peak tension, time for half relaxation and twitch duration. La3+ produced a significant decrease in coronary flow. High Ca2+ augmented the decrease coronary flow. The findings indicate that La3+ may produce marked effects on myocardial function. High extracellular Ca2+ reduces the La(3+)-induced initial decrease in force of contraction, but potentiates the late increase in contractile force by La3+. Elevated external Ca2+ also increases the effects of La3+ on twitch parameters, heart rate and coronary flow.  相似文献   

10.
Small wounds (1.2 mm in diameter) made in the sheet of myoepithelial cells forming the "swimming" muscle of the jellyfish, Polyorchis penicillatus, were closed within 10 h by epithelial cells migrating centripetally to the wound center. Some 24 to 48 h later these cells redifferentiated into fully contractile muscle cells. Labeling with bromodeoxyuridine failed to reveal any cell proliferation during this process. Phenotype switching (within 1 h) from contractile muscle cells to migratory cells did not require synthesis of new protein as shown by treatment with 40 microM cycloheximide. Excitation-contraction coupling in undamaged muscle depended on entry of Ca(2+) through voltage-gated ion channels, as shown by a block of contractility by 40 microM nitrendipine and also on calcium released from intracellular stores since caffeine (10 mM) caused a 25% reduction in contractile force. In contrast, migratory cells did not require a source of extracellular calcium since migration was unimpeded by low (1 microM) free Ca(2+) or nitrendipine. Instead, modulatory calcium was derived from intracellular stores since caffeine (10 mM) and thapsigargin (10 microM) slowed migration. This lack of dependence on calcium influx in migratory cells was further confirmed by a dramatic down-regulation in voltage-gated inward current as shown by whole-cell patch recordings.  相似文献   

11.
Most considerations and models concerning myocardial dynamic properties e.g. potentiation and staircase, are based upon the existence of storage structures in the heart muscle cell. The phenomenon of biphasic tension development (or two-component contraction) in heart muscle preparations of several mammalian species suggests that the sarcoplasmic reticulum is one, but by no means the major, source of activator calcium for the contractile system. The simulation of dynamic properties including biphasic tension development was performed in two steps by a simple "two-Ca store-model" and by an "expanded two-Ca store-model" with following results: Increasing potentiation indicated a decrease in the degree of coupling between the Ca stores. A shift of the interval strength curve to lower intervals as well as a decrease of the steady state contraction height implies a decrease of both, the coupling and the leakage time constant. There was no standard relation between staircase phenomena and structure parameters. Analog displays showed a late (or second) component at prolongated stimulation intervals, in the transient phase after a rest period, in the case of perfectly coupled or uncoupled stores, and at great time constant tau p (which characterizes the calcium pump activity). It is concluded that the late component of biphasic tension development is due to direct activation by the transsarcolemmal Ca flux of the myofilaments, whereas the early component is caused by the release of stored calcium. In the absence of an early component neither potentiation nor marked treppe may be expected.  相似文献   

12.
The effects of aminophylline (10-500 microM) on isometric twitch and tetanic forces were studied in vitro on frog semitendinosus muscle. Two hypotheses were tested: 1) that micromolar concentrations of aminophylline enhanced contractility of isolated skeletal muscle and 2) that the potentiating effect of aminophylline was dependent on the presence of extracellular calcium ions. Muscles were removed, placed in aerated Ringer solution at 20 degrees C, attached to a force transducer, and stimulated directly. Muscles in normal Ringer and aminophylline Ringer were compared throughout the frequency-force relationship from twitches to maximum tetanic force. Aminophylline increased twitch force significantly at concentrations as low as 25 microM. Over a range of stimulation frequencies, but especially at 10 and 20 Hz, aminophylline increased tetanic force. The potentiating effect of aminophylline (100 microM) was reduced or eliminated in calcium-free Ringer containing 10 mM magnesium. We conclude that aminophylline, at therapeutic concentrations, enhances muscle contractility, and the enhancement is dependent on the presence of extracellular calcium. These findings support the concept that aminophylline is effective in improving respiration in humans with airway obstruction by enhancing diaphragmatic contractility.  相似文献   

13.
Relationship between postextrasystolic potentiation and slow-phase force-frequency response in guinea-pig ventricular myocardium. Acta physiol. pol. 1985, 36 (2): 175-184. We investigated relationship between postextrasystolic potentiation (PESP) and a form of slow-phase force-frequency relation, namely the post-rest recovery of contractile force (CF). We found that although the degree of post-rest recovery of CF determines CF of the potentiated beats, PESP does not affect the time-course of post-rest recovery, even if it is sustained by means of paired stimulation. Moreover, PESP may be completely or almost completely inhibited by caffeine in 10 mmolar concentration, whereas post-rest recovery is not significantly affected by this drug. We conclude, that PESP and slow force-frequency relations are based on separate cellular mechanisms.  相似文献   

14.
The force-interval relationship was studied on myocardium preparations from chick embryos and hatched chickens. It is shown that the force-interval relationships of myocardium change during ontogenesis. A negative staircase (a decrease in the isometric force with increasing stimulation rate) in the chick embryo myocardium and a positive steady-state relationship in hatched stage myocardium were revealed. Changes in the force after switching from one stimulation frequency to another, the effects of poststimulation potentiation, as well as responses to the introduction of pauses and extrasystols at a constant stimulation rate were recorded. All the effects observed in the transient processes in preparations from hatched stage myocardium were more pronounced than in embryo myocardium. Our previous mathematical model of calcium recirculation in cardiomyocytes was adapted for simulating the main features of force-interval relationships in embryonal and relatively developed myocardium. The main source of regulatory calcium in the model of hatched stage myocardium is sarcoplasmic reticulum. In the model of embryo myocardium, it was postulated, based on data available in literature, that the main regulator of contractile response of the muscle is calcium that enters cardiomyocytes from extracellular medium. To describe force-interval relationships, by this model, the decreasing dependence of the entry of extracellular calcium on the intervals between stimuli was introduced.  相似文献   

15.
An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca2+ (1.25 up to 11.25 mM) to force generation at 25 °C (acclimation temperature), 15 and 35 °C. The post-rest tension and force–frequency relationship were conducted with and without 10 μM ryanodine in the bathing medium. Increments in extracellular Ca2+ resulted in increases in twitch force development only at 35 °C. A significant post-rest potentiation was recorded for the control preparations at 25 °C (100% to 119.8 ± 4.1%). However, this post-rest potentiation was inhibited by ryanodine only at 25 °C (100% to 97.6 ± 1.5%). At 35 °C, force remained unchanged in the control preparations, but a significant post-rest decay was recorded in the presence of ryanodine (100% to 76.6 ± 4.6%) while at 15 °C, ryanodine was not able to preventing the post-rest potentiation observed in the control preparations. The increases in the imposed contraction frequency caused a decline of the force at 25 and 35 °C and ryanodine decreased significantly peak tension at both temperatures. The findings suggest a high or medium calcium turnover, possibly related to the presence of a functional SR, whose functionality is diminished when temperature is decreased.  相似文献   

16.
It is very well known that progesterone induces uterine relaxation on myometrium contractile activity. However, little attention has been paid to the effect induced by its metabolites on human uterine contractility. Therefore, we set out to analyze the potential relaxing effect of some 5alpha- and 5beta-reduced progesterone derivatives on the spontaneous contractility of myometrium from pregnant women. Samples were obtained by caesarian section at 38-40 weeks of pregnancy. Spontaneous uterine contractions were recorded in vitro in the presence of progesterone, or progestins independently, at different non-cumulative microM concentrations. The progestins elicited an immediate relaxing effect that was concentration-dependent. With the exception of two 5alpha-reduced progestins (5alpha and 3beta,5alpha), the remaining progestins used in the present study were more potent than progesterone. The potency order with respect to their IC50 values was: 3alpha,5alpha (35 microM) > 5beta (81 microM) > 3beta,5beta (156 microM) > 3alpha,5beta (205 microM) > P4 (225 microM) > 5alpha (19 mM) > 3beta,5alpha (28 mM). When tissues were washed, the contractile activity was recovered. This rapid and reversible relaxing effect was not blocking by antiprogestin RU 486, suggesting that is not through receptor-mediated genomic action. The metabolites from progesterone may also determine the pattern of motility, ensuring the necessary quiescent environment to prevent abortion during gestation.  相似文献   

17.
We studied the mechanical and electrophysiological properties of ventricular myocardium from rainbow trout (Oncorhynchus mykiss) in vitro at 4, 10, and 18 degrees C from fish acclimated at 10 degrees C. Temperature alone did not significantly alter the contractile force of the myocardium, but the time to peak tension and time to 80% relaxation were prolonged at 4 degrees C and shortened at 18 degrees C. The duration of the action potential was also prolonged at 4 degrees C and progressively shortened at higher temperatures. An alteration of the stimulation frequency did not affect contraction amplitude at any temperature. Calcium influx via L-type calcium channels was increased by raising extracellular calcium concentration (?Ca(2+)(o)) or including Bay K 8644 (Bay K) and isoproterenol in the bathing medium. These treatments significantly enhanced the contractile force at all temperatures. Calcium channel blockers had a reverse-negative inotropic effect. Unexpectedly, the duration of the action potential at 10 degrees C was shortened as ?Ca(2+)(o) increased. However, Bay K prolonged the plateau phase at 4 degrees C. Caffeine, which promotes the release of sarcoplasmic reticulum (SR) calcium, increased contractile force eightfold at all three temperatures, but the SR blocker ryanodine was only inhibitory at 4 degrees C. Our results suggest that contractile force in ventricular myocardium from Oncorhynchus mykiss is primarily regulated by sarcolemmal calcium influx and that ventricular contractility is maintained during exposure to a wide range of temperatures.  相似文献   

18.
Mouse oocytes were cultured in the presence of dibutyryl cyclic AMP (dbcAMP) and various agents that affect cytoplasmic calcium concentrations. Treatment that inhibited calcium uptake potentiated the inhibitory effect of dbcAMP and treatments which stimulated cellular calcium uptake overcame the effect of dbcAMP. Elevated extracellular calcium (greater than 10 mM) significantly decreased the inhibitory effect of concentrations of dbcAMP up to 150 microM when compared to control levels of calcium (1.7 mM). In addition, the calcium ionophore A23187 (greater than 1 microM) significantly overcame the effect of dbcAMP in media that contained 1.7 or 20 mM calcium. In the presence of 41 microM-dbcAMP the calcium antagonist verapamil increased (in a dose-dependent fashion) the percentage of oocytes blocked at the germinal vesicle stage, from 21% with 10 microM-verapamil to 99% with 200 microM. A similar dose-dependent, reversible potentiation of the effect of dbcAMP was found with tetracaine, which also lowers cytoplasmic calcium concentrations. These results suggest that a minimum level of cytoplasm calcium is required for the initiation of germinal vesicle breakdown and that the action of dbcAMP is mediated by its effect upon this calcium.  相似文献   

19.
We have examined the influence of extracellular pH and calcium concentration on the action of glucagon on isolated rat hepatocytes, perfused liver or plasma membrane preparations. Incubation of rat hepatocytes with 10 nM glucagon at pH 7.4 caused an immediate increase in cAMP concentrations (8-fold), and this rise was almost 50% lower at acidic extracellular pH (6.9). This effect of pH could not be explained by an alteration of the hormone binding to its receptor for glucagon concentrations higher than 1 nM. The effect of acidosis on cAMP production was still present with non-hormonal effectors, such as 10 microM Gpp[NH]p, 30 microM forskolin or 10 mM NaF. This suggests a direct action of acidosis on the regulatory component Ns and/or on the catalytic subunit of adenylate cyclase. Acidic pH also depressed mitochondrial processes responsive to glucagon (NAD(P)H fluorescence, glutamine breakdown). Whatever the experimental model, calcium appeared to be required for maximal stimulation of cAMP production by glucagon. On perfused rat liver, glycogenolysis was depressed in the absence of extracellular calcium in the perfusate. In isolated hepatocytes, the stimulation of phosphorylase alpha activity by glucagon was modulated by extracellular calcium concentrations lower than 0.2 mM. This suggests that, although glucagon action is chiefly cAMP-mediated, its effect on calcium mobilization (affecting various cellular process, including cAMP production itself) should also be taken into account. This work also confirmed the importance of calcium in the stimulation of mitochondrial metabolism of glutamine by glucagon.  相似文献   

20.
The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号