首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present report investigated steroidogenesis in vitro in testis tissues obtained from two boys aged 8 months and 4 years with ambiguous external genitalia and male vagina, and a 4-year-old body with true precocious puberty. Histologically, testes of the former two boys are still immature and the testis of the last one contains differentiated Sertoli cells and primary spermatocytes, but no mature Leydig cells are recognized in any of them. In each testis, 17 beta-hydroxysteroid oxidoreductase is active for androstenedione in the presence of an excess amount of NADPH, while delta 5-3 beta-hydroxysteroid dehydrogenase and delta 4-steroid 5 alpha-reductase activities are limited. 17 alpha-Hydroxylase and C17--20 lyase are significantly active in each testis and are enhanced in the testis of the boy with precocious puberty. Although the testis tissue used in the present study may not be biologically normal and the number of cases investigated is still limited, the above results indicate that active 17 beta-hydroxysteroid oxidoreductase is present in immature human testes and that delta 5-3 beta-hydroxysteroid dehydrogenase may become active in the human testis at the advanced stage of the development of testicular function during the puberty.  相似文献   

2.
The immunocytochemical localization of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in porcine testes was examined by applying an indirect-immunofluorescence method using an antiporcine testicular 17 beta-HSD antibody. Only the Leydig cells located in the interstitial tissue exhibited a positive immunoreaction for 17 beta-HSD: the germ cells and Sertoli cells located in the seminiferous tubules were entirely negative. These results suggest that, in porcine testis, the biosynthesis of testicular testosterone, the final step of which is the conversion of androstenedione to testosterone, takes place in the Leydig cells.  相似文献   

3.
In previous histoimmunochemical studies we reported that transferrin (TF) and insulin-like growth factor I (IGF-I) are present in the cytoplasm of the Sertoli cells of the adult human testis. Receptors for TF were found mainly in adluminal germ cells and type I receptors for IGF-I both in Sertoli and germ cells. Using electron microscopy, evidence of transfer of both TF and IGF-I from the Sertoli to the germ cells through a receptor-mediated endocytosis mechanism was also found. In this paper we report the results of the histoimmunochemical localization of alpha inhibin in the human fetal, prepubertal and adult testis. In 8- to 14-week-old fetal testes a positive immunostaining was found mainly in the interstitial cells, whereas no staining was found in the germ cords. In the prepubertal testis the immunostaining was present in the Sertoli cells but not in the interstitial cells. In the adult human testis the immunostaining was present not only in the Sertoli cells but also in the spermatocytes and in several Leydig cells. Using electron microscopy and immunogold labeling the presence of alpha inhibin immunoreactivity was found in the rough endoplasmic reticulum and in the Golgi cisternae of both Sertoli and Leydig cells. Moreover we found evidence of transfer of alpha inhibin from the Sertoli to the germ cells through receptor-mediated endocytosis.  相似文献   

4.
The intermediate filament protein nestin is predominantly expressed in some stem/progenitor cells and appears to be a useful molecular tool to characterise tumours originating from precursor cells of neuroectodermal and mesenchymal lineages. Leydig cells originate in the adult testis by differentiation from stem cells and express a variety of neural and neuroendocrine markers. The possible expression of the neural stem cell marker nestin in Leydig cells and testicular tumour cells was determined by analysing the patterns of nestin expression in normal and pathological human testes by Western blot and immunohistochemical methods. In normal testis, nestin was found in some vascular endothelial cells, a subset of peritubular spindle-shaped cells and some Leydig cells; spermatogenic and Sertoli cells were unstained. In normal Leydig cells, nestin was distributed in the perinuclear cytoplasm and accumulated in the crystalloids of Reinke with ageing. In non-tumour pathologies (cryptorchidism, impaired spermatogenesis), the seminiferous tubules were immunonegative, whereas hyperplastic Leydig cells showed cytoplasmic immunolabelling. In testicular malignancies, nestin was localised in the Sertoli cells of the seminiferous tubules affected with intratubular germ cell neoplasia, in the hyperplastic Leydig cells associated with these tumours and in some components (mesenchymal and neuroepithelial cells) of teratomas; spermatocytic and non-spermatocytic seminomas were unstained. Some vascular endothelial cells were immunolabelled in all tumour samples. Thus, nestin is expressed in a population of normal and hyperplastic Leydig cells and in Sertoli cells in the presence of intratubular germ-cell neoplasia. Nestin may be a good marker for identifying components of testicular teratomas.The two first authors participated equally in this workThis work was supported by a grant from the Fondo de Investigaciones Sanitarias (FIS 02/3003 to M.V.T. Lobo)  相似文献   

5.
Trout testes at various stages of maturation were dissociated by perfusion at 12°C with collagenase plus pronase and then with collagenase alone, followed by slight shaking overnight in 1% bovine albumin. This step provided a suspension of isolated somatic and germ cells, clusters of interstitial cells, and either intact spermatogenetic cysts (meiotic testes) or clusters of Sertoli cells (other testes). Most of the spermatozoa were removed from the testis cell suspension by centrifugation in Percoll (density 1.065 g/ml). Sertoli and Leydig cells were prepared by a two-step separation method: (1) the testis cell suspension was separated by sedimentation at unit gravity into “isolated cell” and “cell cluster” populations; (2) these populations were fractionated by isopyknic centrifugation in Percoll gradients. In terms of somatic cell composition, a nearly pure Sertoli cell (clusters) population was obtained between 1.017 and 1.033 g/ml and a Leydig cell (clusters) enriched population of between 1.033 and 1.048 g/ml (testes resuming spermatogenesis) or 1.048 and 1.062 g/ml (other testes). These various cell populations were cultured in modified Leibovitz L15 medium for 10–15 days. When seeded, the Sertoli cells had a normal ultrastructure that remained unchanged for at least 10 days, and the steroidogenic activity of Leydig cells could be stimulated by salmon gonadotropin. Leydig cells remained 3β-HSD positive and produced progesterone and 17α, 20β-OH progesterone for at least 11 days. This study points out that viable and differentiated trout somatic testicular cells can be prepared and cultured for several days.  相似文献   

6.
In the present research we have investigated the distribution of the sugar residues of the glycoconjugates in the prepubertal and postpubertal testes of a subject with Morris's syndrome (CAIS, Complete Androgen Insensitivity Syndrome). For this purpose a battery of six horseradish peroxidase-conjugated lectins was used (SBA, PNA, WGA, ConA, LTA and UEAI). We have obtained a complete distributional map of the terminal and sub-terminal oligosaccharides in the tunica albuginea, interstitial tissue, lamina propria of the seminiferous tubules, Leydig cells, Sertoli cells, spermatogonia, mastocytes and endothelial cells. Furthermore the present study has shown that a large amount of sugar residues were detectable in the prepubertal and postpubertal testes but that some differences exist with particular regard to the Sertoli cells. The Sertoli cells and the Leydig cells of the retained prepubertal testis of the patient affected by Morris's syndrome were characterized by the presence of alpha-L-fucose, which was absent in the retained prepubertal testis of the normal subjects. Comparing the results on the postpubertal testis with those obtained on the same aged testis of healthy subjects we have demonstrated that alpha-L-fucose in the Sertoli and Leydig cells and D-galactose-N-acetyl-D-galactosamine in the Leydig cells are a unique feature of the subject affected by Morris's syndrome. D-galactose (ss1,3)-N-acetyl-D-galactosamine and sialic acid, which are present in the Leydig cells of the normal testis were never observed in the same cells of the postpubertal testis of the CAIS patient.  相似文献   

7.
We investigated the effect of retinoids on the development of Sertoli, germ, and Leydig cells using 3-day culture of testes from fetuses 14.5 and 18.5 days post-conception (dpc) and from neonates 3 days postpartum (dpp). Addition of 10(-6) M and 3.10(-8) M retinoic acid (RA) caused a dose-dependent disruption of the seminiferous cords in 14.5-day-old fetal testes, without any change in the 5-bromo-2'-deoxyuridine (BrdU) labeling index of the Sertoli cells. RA caused no disorganization of older testes, but it did cause hyperplasia of the Sertoli cells in 3-dpp testes. Fragmentation of the Sertoli cell DNA was not detected in control or RA-treated testes at any age studied. The cAMP produced in response to FSH was significantly decreased in RA-treated testes for all studied ages. Both 10(-6) M and 3.10(-8) M RA dramatically reduced the number of gonocytes per 14.5-dpc testis. This resulted from a high increase in apoptosis, which greatly exceeded the slight increase of mitosis. RA caused no change in the number of gonocytes in testes explanted on 18.5 dpc (the quiescent period), whereas it increased this number in testes explanted on 3 dpp (i.e., when gonocyte mitosis and apoptosis resume). Lastly, RA and retinol (RE) reduced both basal and acute LH-stimulated testosterone secretion by 14.5-dpc testis explants, without change in the number of 3beta-hydroxysteroid dehydrogenase-positive cells per testis. Retinoids had no effect on basal or LH-stimulated testosterone production by older testes. In conclusion, RE and RA are potential regulators of the development of the testis and act mainly negatively during fetal life and positively during the neonatal period on the parameters we have studied.  相似文献   

8.
In this investigation, 22 cloned male piglets were obtained by male fetal fibroblast-cell-derived nuclear transfer. Eighteen of the cloned animals died. The two cell lines did not differ significantly with regard to efficiency of live piglet production. The gross anatomy of the testes of male piglets that died was normal. However, one piglet displayed Leydig cell hypoplasia (LCH). No anatomical defects were detected in the testes of other cloned male piglets. TUNEL analysis of the testis with LCH revealed significant apoptosis in the Leydig cells, while apoptosis was rarely detected in Sertoli cells and spermatogonia. In contrast, testes from the remaining 17 piglets that died appeared normal in size, and their Sertoli and Leydig cell numbers were comparable to those in control piglet testes. Although cloned piglets were derived from fibroblasts obtained from the same fetus, phenotypic instability between cells used for the production of somatic cell cloned piglets suggests that abnormalities in male cloned piglets are caused not by technical problems and/or reprogramming effects, but rather by epigenetically and/or genetically damaged cell-specific effects.  相似文献   

9.
In the testis, androgen receptors are known to mediate autocrine and paracrine effects of androgens on Leydig cell function and spermatogenesis. The pig presents some unusual features with regard to the synthesis of testosterone and estrogens in the male gonads. In testes from prepubertal males, testosterone level was lower than in testes from adult boars, while estrogen secretion was relatively high and comparable to that of mature porcine gonad. Immunolocalization of androgen receptors and intensity of immunohistochemical staining was age-dependent. In testis sections from adult boars, androgen receptors were found in nuclei of all somatic cells such as Leydig cells, Sertoli cells, and peritubular-myoid cells, whereas in sections from immature pigs only in the Leydig cell cytoplasm showed positive immunoreaction for androgen receptors. In control tissue sections incubated with omission of the primary antibody, no positive staining was observed. Detection of the androgen receptors in testicular cells of the pig is important for understanding of their central role in mediating androgen action.  相似文献   

10.
Tyro 3 family receptors contain three members-Tyro 3, Axl, and Mer-that are essential regulators of mammalian spermatogenesis. However, their exact expression patterns in testis are unclear. In this study, we examined the localizations of Tyro 3, Axl, Mer, and their ligand Gas6 in postnatal mouse testes by immunohistochemistry. All three members and their ligand were continuously expressed in different testicular cells during postnatal development. Tyro 3 was expressed only in Sertoli cells with a varied distribution during testis development. At day 3 postnatal, Tyro 3 was distributed in overall cytoplasmic membrane and cytoplasm of Sertoli cells. From day 14 to day 35 postnatal, Tyro 3 appeared on Sertoli cell processes toward the adlumenal compartment of seminiferous tubules. A stage-dependent Tyro 3 immunoexpression in Sertoli cells was shown by adulthood testis at day 56 postnatal with higher expression at stages I-VII and lower level at stages IX-XII. Axl showed a similar expression pattern to Tyro 3, except for some immunopositive Leydig cells detected in mature testis. In contrast, immunostaining of Mer was detected mainly in primitive spermatogonia and Leydig cells, whereas a relative weak signal was found in Sertoli cells. Gas6 was strongly expressed in Leydig cells, and a relative weak staining signal was seen in primitive spermatogonia and Sertoli cells. These immunoexpression patterns of Tyro 3 family receptors and ligand in testis provide a basis to further study their functions and mechanisms in regulating mammalian spermatogenesis.  相似文献   

11.
Morphological, histochemical and biochemical studies of the testis of mice with testicular feminization (tfm/y) reveal a large accumulation of lipids in Leydig cells and in Sertoli cells. In Leydig cells of tfm/y mice, lipid droplets do not exhibit the special relationship with smooth endoplasmic reticulum that exists in normal adult Leydig cells. Compared to the surgically-cryptorchid control, the tfm/y testis contains more lipid in Leydig cells but less in Sertoli cells. There are also quantitative differences in testicular lipids in tmf/y and normal testes but no significant differences were noted between tfm/y and surgically-cryptorchid testes. The testes of both the genetically defective and surgically-cryptochid animals contain increased amounts of total lipids and phospholipids, and of free and esterified cholesterols. Exogenous testosterone has no effect on lipids or other characteristics of these cells. The present results suggest that the increased lipids in tfm/y mice result from a genetic disorder that asserts itself (1) in Leydig cells where it is associated with, and is probably a result of, impaired lipid metabolism and steroidogenesis, and (2) in Sertoli cells where it is perhaps attributable to arrested spermatogenesis and impaired steroidogenesis.  相似文献   

12.
The aim of this study is to examine the influence of Sertoli cells on LH binding to Leydig cells in culture in immature mice. Leydig cells and Sertoli cells were obtained from the testes of immature C57BL/6Ncrj mice and were cultured in serum-free medium for 7 days. The LH binding to Leydig cells and the FSH binding to Sertoli cells were dependent on incubation time, the number of cells, and the amount of labelled hormone added. The dissociation constant for LH binding to Leydig cells was 7.3 x 10(-10) M. Co-culture of Leydig cells with Sertoli cells for 7 days decreased LH binding to Leydig cells. The binding was 34.9% of that to Leydig cells cultured alone. After cultivation of Leydig cells with spent Sertoli cell-cultured medium (SM) for the last 4 days of the 7-day culture period, LH binding to Leydig cells decreased to as low as 17.4% of that of the controls. For the controls, LH binding was measured in Leydig cells cultured in spent Leydig cell-cultured medium (LM). There was no difference between SM- and LM-cultures in the final survival rate or the percentage of cells showing histochemically demonstrated 3 beta-hydroxysteroid dehydrogenase activity. These data suggest that some factor or factors are secreted from the cultured Sertoli cells and inhibit the binding of LH to Leydig cells in culture.  相似文献   

13.
Gonadotropins and testosterone were immunocytochemically localized in the fetal rat testes 16-18 days of gestation with the unlabeled antibody-peroxidase anti-peroxidase complex technique. Maximum staining for gonadotropins with antiserum to the beta chain of human chorionic gonadotropin (anti-hCGbeta) occurred at 16 days gestation in the seminferous tubule and 17 days gestation in interstitial (Leydig) cells. Anti hCGbeta sites were on the plasma membranes at the luminal aspects of Sertoli cells at 16 days gestation. In addition, intracellular hCGbeta sites were evident including the nucleus, nucleolus, ribosomes, some vesicles, lysosomes and centrioles. The stain for hCGbeta disappeared rapidly and by 17 days was limited to patches in the cytoplasm and nuclei. In the fetal testes, staining for anti-testosterone binding sites was most intense at 18 days of gestation either in lipid droplets or on nuclei of Leydig and Sertoli cells. Very little testosterone stain was observed before 18 days of gestation. These findings agree with physiologic data that suggest that gonadotropins bind to receptors and stimulate testicular development and the capacity for testosterone production.  相似文献   

14.
Immunocytochemical study on the localization of inhibin in the testes of human, bonnet monkey, dog and rat was carried out using indirect immunoperoxidase technique, in order to investigate the cell types involved in inhibin production/storage. A positive reaction was observed in the testes of human, monkey and dog while it was negative in rat testis using specific antiserum to human testicular inhibin generated against homogeneous preparation of human testicular inhibin in our laboratory. Inhibin was found to be localized in Sertoli cells, spermatogonia and primary spermatocytes of human, monkey and dog testes. A weak positive reaction was observed in spermatids of human testis only. Interestingly, Leydig cells of human, monkey and dog testes showed positive reaction indicating presence of inhibin in these cells also.  相似文献   

15.
Expression of p57 in mouse and human testes   总被引:1,自引:0,他引:1  
The expression of cyclin-dependent kinases inhibitors, p57kip2, was investigated during the postnatal development of mouse testis, and in adult human testis. Expression of p57kip2 mRNA was higher in immature than pubertal or adult mouse testes. In postnatal day 7 (PND7) testes, moderate p57kip2 immunoreactivity was found in spermatogonia, but signal was heterogeneous among the spermatogonia. In PND14 testes onward, strong immunoreactivity of p57kip2 was found in the nuclei of early spermatocytes but not in the late pachytene stage onward. In PND28 and PND50 testes, p57kip2 immunoreactivity was varying among the seminiferous tubules. There was no visible signal in late pachytene stage onward. In Leydig cells, heterogeneous immunoreactivity of p57kip2 was found in immature testis and the signal intensity was higher in adult testis than immature ones. In Sertoli cells, weak or negligible immunoreactivity of p57kip2 was found. In human seminiferous tubule, strong immunoreactivity of p57kip2 was found in the nucleus of early spermatocytes, but not in the late pachytene spermatocytes onward and Sertoli cells. These results suggest the possible role of p57kip2 in the regulation of early spermatogonial proliferation, meiotic progression of early spermatocytes and differentiation of Leydig cells in testis.  相似文献   

16.
Some males of a mutant strain of King-Holtzman rats exhibit an anomalous heritable defect manifested as either unilateral or bilateral ectopic testes. In the adult, these testes contain seemingly immature Sertoli and Leydig cells, seminiferous tubules greatly reduced in diameter, and exhibit arrested spermatogenesis. Thus, the affected testis is essentially sterile. An inability to produce normal amounts of testosterone and androstenedione by these gonads is probably a reflection of changes that have been effected in their Leydig cells. Thus, this study suggests that abnormal function of the Leydig and Sertoli cells and seminiferous tubule failure in these mutant animals result from the physiologically cryptorchid condition.  相似文献   

17.
Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.  相似文献   

18.
Pro-opiomelanocortin (POMC) gene expression and POMC peptides have been demonstrated in the Leydig cells of the testis, although selective removal of the Leydig cells with the cytotoxic drug ethane dimethane sulfonate did not significantly reduce levels of testicular POMC mRNA or peptides in adult rats. Since macrophages in the rat spleen synthesize POMC peptides, we investigated whether isolated macrophages from the adult rat testis may be an additional source of POMC-derived peptides. Testicular macrophages were isolated by collagenase treatment of adult rat testes and adherence to siliconized glass coverslips; the biological, cytochemical and immunological characteristics of the attached cells were compared with those of Leydig cells purified by Percoll gradient centrifugation. Macrophages in the cell preparations were identified by positive esterase cytochemical staining, latex bead ingestion, and immunocytochemical staining with ED2 (a macrophage-specific monoclonal antibody), and an absence of 3 beta-hydroxysteroid dehydrogenase cytochemical staining. Leydig cells in the purified preparations were positive for 3 beta-hydroxysteroid dehydrogenase and esterase staining but negative with ED2, and were not phagocytic. Based on these criteria, the purities of the macrophage and Leydig cell preparations employed in this study were estimated to be 87 +/- 4% and 91 +/- 3%, respectively. Cytoplasmic beta-endorphin (beta EP) immunoreactivity (ir) was present in 62 +/- 9% of cells in the purified Leydig cell preparations--confirming these cells as a source of POMC-derived peptides. In addition, ir-beta EP and ir-ACTH were localized to the cytoplasm of a similar proportion of cells (beta EP, 62.5 +/- 5%; ACTH, 64 +/- 5%) in macrophage preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In mammals, polypeptides secreted by cells of the testis are believed to influence spermatogenesis and to affect the behavior of the resident somatic cell populations. The 43,000-MW, secreted, calcium-binding glycoprotein SPARC (Secreted Protein, Acidic and Rich in Cysteine) is synthesized by a number of embryonic, fetal, and adult somatic cells and is associated with areas of cellular differentiation, proliferation, and morphological reorganization. Here, we report on the expression of SPARC in the testes of adult mice. By immunohistochemistry, SPARC was observed in the cytoplasm of Leydig cells and of Sertoli cells bearing late-stage, elongate spermatids. Testicular mRNA, translated in vitro, yielded a polypeptide of approximately 42,000 MW that bound anti-SPARC antibodies. Northern blot analysis revealed 2.3 kilobase (kb) SPARC mRNA in the testis, a size comparable to that of SPARC mRNA in nongonadal cells. Western blot assays of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an immunoreactive polypeptide of 43,000 MW in purified mouse Sertoli cells and their culture supernatants. Similar assays of testis interstitial fluid revealed 43,000 MW and 30,000 MW immunoreactive polypeptides. By indirect immunofluorescence, purified mouse Leydig cells cultured 24-48 h expressed SPARC in cytoplasmic granules. Cultured Leydig cells incorporated [35S]methionine into a secreted polypeptide of 43,000 MW that was recognized by anti-SPARC antibodies. In metal binding assays, purified SPARC bound Ca2+, Fe2+ and Cu2+. The function of SPARC in testes may be to sequester or transport certain metallic cations. Our recent discovery that SPARC induces changes in shape of certain nongonadal cell types also suggests that this glycoprotein may influence the functions of both Leydig and Sertoli cells by affecting their morphology.  相似文献   

20.
This study provides quantitative information on the testes of seasonally breeding golden hamsters during active and regressed states of gonadal activity. Seminiferous tubules occupied 92.5% of testis volume in adult gonadally active animals. Leydig cells constituted 1.4% of the testicular volume. The mean volume of an individual Leydig cell was 1092 microns 3, and each testis contained about 25.4 million Leydig cells. The volume of an average Sertoli cell nucleus during stage VII-VIII of the cycle was 502 microns 3. A gram of hamster testis during the active state of gonadal activity contained 44.5 million Sertoli cells, and the entire testis contained approximately 73.8 million Sertoli cells. Testes of the hamsters exposed to short photoperiods for 12-13 wk displayed a 90% reduction in testis volume that was associated with a decrease in the volume of seminiferous tubules (90.8% reduction), tubular lumena (98.8%), interstitium (72.7%), Leydig cell compartment (79.3%), individual Leydig cells (69.7%), Leydig cell nuclei (50.0%), blood vessels (85.5%), macrophages (68.9%), and Sertoli cell nuclei (34.1%). The diameter (61.1%) and the length (36.8%) of the seminiferous tubules were also decreased. Although the number of Leydig cells per testis was significantly lower (p less than 0.02) after short-photoperiod exposure, the number of Sertoli cells per testis remained unchanged. The individual Sertoli cell in gonadally active hamsters accommodated, on the average, 2.27 pre-leptotene spermatocytes, 2.46 pachytene spermatocytes, and 8.17 round spermatids; the corresponding numbers in the regressed testes were 0.96, 0.20, and 0.04, respectively. The striking differences in the testicular structure between the active and regressed states of gonadal activity follow photoperiod-induced changes in endocrine function and suggest that the golden hamster may be used as a model to study structure-function relationships in the testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号