首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动态神经网络中的同步振荡   总被引:3,自引:0,他引:3  
目前有一种假设认为同一视觉对象是由一群神经元的同步振荡活动来表征的。这一神经元发放活动的时间特性,是解决视觉信息处理中“结合问题(Bindingproblem)”的可能机制。本文用我们所提出的一种简化现实性神经网络模型[1]所构造的时滞非线性振子网络[2],模拟生物神经网络的同步振荡活动。并考虑了振子各参数的设置与振荡活动的关系,以及网络振子间耦联对同步活动的影响.  相似文献   

2.
Recent experimental results imply that inhibitory postsynaptic potentials can play a functional role in realizing synchronization of neuronal firing in the brain. In order to examine the relation between inhibition and synchronous firing of neurons theoretically, we analyze possible effects of synchronization and sensitivity enhancement caused by inhibitory inputs to neurons with a biologically realistic model of the Hodgkin-Huxley equations. The result shows that, after an inhibitory spike, the firing probability of a single postsynaptic neuron exposed to random excitatory background activity oscillates with time. The oscillation of the firing probability can be related to synchronous firing of neurons receiving an inhibitory spike simultaneously. Further, we show that when an inhibitory spike input precedes an excitatory spike input, the presence of such preceding inhibition raises the firing probability peak of the neuron after the excitatory input. The result indicates that an inhibitory spike input can enhance the sensitivity of the postsynaptic neuron to the following excitatory spike input. Two neural network models based on these effects on postsynaptic neurons caused by inhibitory inputs are proposed to demonstrate possible mechanisms of detecting particular spatiotemporal spike patterns. Received: 15 April 1999 /Accepted in revised form: 25 November 1999  相似文献   

3.
We demonstrated synchronous oscillation of intracellular Ca2+ in cultured-mouse mid-brain neurons. This synchronous oscillation was thought to result from spontaneous and synchronous neural bursts in a synaptic neural network. We also examined the role of endogenous dopamine in neural networks showing synchronous oscillation. Immunocytochemical study revealed a few tyrosine hydroxylase (TH)-positive dopaminergic neurons, and that cultured neurons expressed synaptophysin and synapsin I. Western blot analyses comfirmed synaptophysin, TH, and 2 types of dopamine receptor (DR), D1R and D2R expression. The synchronous oscillation in midbrain neurons was abolished by the application of R(-)-2-amino-5-phosphonopentanoic acid (AP-5) as an N-methyl-D-aspartate receptor (NMDAR) antagonist. This result suggests that the synchronous oscillation in midbrain neurons requires glutamatergic transmissions, as was the case in previously reported cortical neurons. SCH-12679, a D1R antagonist, inhibited synchronous oscillation in midbrain neurons, while raclopride, a D2R antagonist, induced a transient increase of intracellular Ca2+ and inhibited synchronous oscillation. We consider that endogenous dopamine maintains synchronous oscillation of intracellular Ca2+ through D1R and D2R, and that these DRs regulate intracellular Ca2+in distinctly different ways. Synchronous oscillation of midbrain neurons would be a useful tool for in vitro researches into various neural disorders directly or indirectly caused by dopaminergic neurons.  相似文献   

4.
Spontaneous brain activities consume most of the brain’s energy. So if we want to understand how the brain operates, we must take into account these spontaneous activities. Up and down transitions of membrane potentials are considered to be one of significant spontaneous activities. This kind of oscillation always shows bistable and bimodal distribution of membrane potentials. Our previous theoretical studies on up and down oscillations mainly looked at the ion channel dynamics. In this paper, we focus on energy feature of spontaneous up and down transitions based on a network model and its simulation. The simulated results indicate that the energy is a robust index and distinguishable of excitatory and inhibitory neurons. Meanwhile, one the whole, energy consumption of neurons shows bistable feature and bimodal distribution as well as the membrane potential, which turns out that the indicator of energy consumption encodes up and down states in this spontaneous activity. In detail, energy consumption mainly occurs during up states temporally, and mostly concentrates inside neurons rather than synapses spatially. The stimulation related energy is small, indicating that energy consumption is not driven by external stimulus, but internal spontaneous activity. This point of view is also consistent with brain imaging results. Through the observation and analysis of the findings, we prove the validity of the model again, and we can further explore the energy mechanism of more spontaneous activities.  相似文献   

5.
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.  相似文献   

6.
Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular layer, is highly regulated by GoCs. However, there are various types of inhibition implemented by GoCs. With inputs from mossy fibers, GCs and GoCs are reciprocally connected to exhibit different network motifs of synaptic connections. From the view of GCs, feedforward inhibition is expressed as the direct input from GoCs excited by mossy fibers, whereas feedback inhibition is from GoCs via GCs themselves. In addition, there are abundant gap junctions between GoCs showing another form of inhibition. It remains unclear how these diverse copies of inhibition regulate neural population oscillation changes. Leveraging a computational model of the granular layer network, we addressed this question to examine the emergence and modulation of network oscillation using different types of inhibition. We show that at the network level, feedback inhibition is crucial to generate neural oscillation. When short-term plasticity was equipped on GoC-GC synapses, oscillations were largely diminished. Robust oscillations can only appear with additional gap junctions. Moreover, there was a substantial level of cross-frequency coupling in oscillation dynamics. Such a coupling was adjusted and strengthened by GoCs through feedback inhibition. Taken together, our results suggest that the cooperation of distinct types of GoC inhibition plays an essential role in regulating synchronous oscillations of the GC population. With GCs as the sole output of the granular network, their oscillation dynamics could potentially enhance the computational capability of downstream neurons.  相似文献   

7.
1. Synchronous oscillation of intracellular Ca2+ in the central nervous system is essential for neural development. We previously reported that endogenous dopamine was involved with synchronous Ca2+ oscillation of primary cultured midbrain neurons, and that regulation of dopamine in synchronous oscillation was distinctly different through dopamine receptor 1 (D1R) and 2 (D2R): the action of dopamine through D1R or D2R was facilitative or suppressive, respectively, to the Ca2+ influx of synchronous oscillation.2. In the present study, we confirmed that the suppressive effects of D2R were mediated by the regulation of the L-type voltage-gated Ca2+ channel, not by the regulation of NMDA receptor on the Ca2+ influx in the midbrain neural network showing synchronous oscillation.3. This evidence promotes better understanding of the regulation of neural activity by endogenous dopamine in networked neurons.  相似文献   

8.
Phase coding in a neural network composed of neural oscillators with inhibitory neurons was studied based on the theory of stochastic phase dynamics. We found that with increasing the coupling coefficients of inhibitory neural oscillators, the firing density in excitatory population transits to a critical state. In this case, when we increase the inhibitory coupling, the firing density will come into dynamic balance again and tend to a fixed value gradually. According to the phenomenon, in the paper we found parameter regions to exhibit those different population states, called dividing zones including flat fading zone, rapid fading zone and critical zone. Based on the dividing zones we can choose the number ratio between inhibitory neurons and excitatory neurons in the neural network, and estimate the coupling action of inhibitory population and excitatory population. Our research also shows that the balance value, enabling the firing density to reach the dynamic balance, does not depend on initial conditions. In addition, the critical value in critical state is only related to the number ratio between inhibitory neurons and excitatory neurons, but is independent of inhibitory coupling and excitatory coupling.  相似文献   

9.
Although recent reports have suggested that synchronous neuronal UP states are mediated by astrocytic activity, the mechanism responsible for this remains unknown. Astrocytic glutamate release synchronously depolarizes adjacent neurons, while synaptic transmissions are blocked. The purpose of this study was to confirm that astrocytic depolarization, propagated through synaptic connections, can lead to synchronous neuronal UP states. We applied astrocytic currents to local neurons in a neural network consisting of model cortical neurons. Our results show that astrocytic depolarization may generate synchronous UP states for hundreds of milliseconds in neurons even if they do not directly receive glutamate release from the activated astrocyte.  相似文献   

10.
动态神经元网络模型的复杂性问题   总被引:1,自引:1,他引:1  
在动态神经元网络模型中,当神经元总数仅为3时就观察到了非周期振荡。运用Lempel和Ziv提出的复杂性度量对这种现象进行了分析,结果表明对于其中一个神经元所发出的脉冲序列来说,至少直到1000个脉冲为止还不能发现任何的周期性,并且其复杂性可以和由logistic映射所产生的时间序列当其参数落在混沌区中时所具有的复杂性相比拟.这些结果也表明这种方法是所观察的时间范围内区分长周期振荡和非周期活动的好方法。结果还提示神经生理实验记录中所谓的噪声,其中有些可能是来源于生物神经元本身的非线性性质。  相似文献   

11.
Default mode network (DMN) is a functional brain network with a unique neural activity pattern that shows high activity in resting states but low activity in task states. This unique pattern has been proved to relate with higher cognitions such as learning, memory and decision-making. But neural mechanisms of interactions between the default network and the task-related network are still poorly understood. In this paper, a theoretical model of coupling the DMN and working memory network (WMN) is proposed. The WMN and DMN both consist of excitatory and inhibitory neurons connected by AMPA, NMDA, GABA synapses, and are coupled with each other only by excitatory synapses. This model is implemented to demonstrate dynamical processes in a working memory task containing encoding, maintenance and retrieval phases. Simulated results have shown that: (1) AMPA channels could produce significant synchronous oscillations in population neurons, which is beneficial to change oscillation patterns in the WMN and DMN. (2) Different NMDA conductance between the networks could generate multiple neural activity modes in the whole network, which may be an important mechanism to switch states of the networks between three different phases of working memory. (3) The number of sequentially memorized stimuli was related to the energy consumption determined by the network''s internal parameters, and the DMN contributed to a more stable working memory process. (4) Finally, this model demonstrated that, in three phases of working memory, different memory phases corresponded to different functional connections between the DMN and WMN. Coupling strengths that measured these functional connections differed in terms of phase synchronization. Phase synchronization characteristics of the contained energy were consistent with the observations of negative and positive correlations between the WMN and DMN reported in referenced fMRI experiments. The results suggested that the coupled interaction between the WMN and DMN played important roles in working memory.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09674-1.  相似文献   

12.
Synchronized oscillation is very commonly observed in many neuronal systems and might play an important role in the response properties of the system. We have studied how the spontaneous oscillatory activity affects the responsiveness of a neuronal network, using a neural network model of the visual cortex built from Hodgkin-Huxley type excitatory (E-) and inhibitory (I-) neurons. When the isotropic local E-I and I-E synaptic connections were sufficiently strong, the network commonly generated gamma frequency oscillatory firing patterns in response to random feed-forward (FF) input spikes. This spontaneous oscillatory network activity injects a periodic local current that could amplify a weak synaptic input and enhance the network's responsiveness. When E-E connections were added, we found that the strength of oscillation can be modulated by varying the FF input strength without any changes in single neuron properties or interneuron connectivity. The response modulation is proportional to the oscillation strength, which leads to self-regulation such that the cortical network selectively amplifies various FF inputs according to its strength, without requiring any adaptation mechanism. We show that this selective cortical amplification is controlled by E-E cell interactions. We also found that this response amplification is spatially localized, which suggests that the responsiveness modulation may also be spatially selective. This suggests a generalized mechanism by which neural oscillatory activity can enhance the selectivity of a neural network to FF inputs.  相似文献   

13.
The background activity of a cortical neural network is modeled by a homogeneous integrate-and-fire network with unreliable inhibitory synapses. For the case of fast synapses, numerical and analytical calculations show that the network relaxes into a stationary state of high attention. The majority of the neurons has a membrane potential just below the threshold; as a consequence the network can react immediately – on the time scale of synaptic transmission- on external pulses. The neurons fire with a low rate and with a broad distribution of interspike intervals. Firing events of the total network are correlated over short time periods. The firing rate increases linearly with external stimuli. In the limit of infinitely large networks, the synaptic noise decreases to zero. Nevertheless, the distribution of interspike intervals remains broad. Action Editor: Misha Tsodyks  相似文献   

14.
A neural network model of how dopamine and prefrontal cortex activity guides short- and long-term information processing within the cortico-striatal circuits during reward-related learning of approach behavior is proposed. The model predicts two types of reward-related neuronal responses generated during learning: (1) cell activity signaling errors in the prediction of the expected time of reward delivery and (2) neural activations coding for errors in the prediction of the amount and type of reward or stimulus expectancies. The former type of signal is consistent with the responses of dopaminergic neurons, while the latter signal is consistent with reward expectancy responses reported in the prefrontal cortex. It is shown that a neural network architecture that satisfies the design principles of the adaptive resonance theory of Carpenter and Grossberg (1987) can account for the dopamine responses to novelty, generalization, and discrimination of appetitive and aversive stimuli. These hypotheses are scrutinized via simulations of the model in relation to the delivery of free food outside a task, the timed contingent delivery of appetitive and aversive stimuli, and an asymmetric, instructed delay response task.  相似文献   

15.
The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons are studied analytically. The analysis reveals a rich repertoire of states, including synchronous states in which neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity; and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than the global oscillation frequency. The network can switch between these states, provided the external frequency, or the balance between excitation and inhibition, is varied. Two types of network oscillations are observed. In the fast oscillatory state, the network frequency is almost fully controlled by the synaptic time scale. In the slow oscillatory state, the network frequency depends mostly on the membrane time constant. Finite size effects in the asynchronous state are also discussed.  相似文献   

16.
关于耦合神经元活动时的能量原理   总被引:3,自引:0,他引:3  
最近美国耶鲁大学的神经科学家们用实验数据表明,哺乳动物大脑皮层中神经信号的传递是一个代价昂贵的能量支出过程,而神经信号的编码是与能量代谢紧密地耦合在一起的,但是到目前为止还无法定量给出神经元活动时的能量函数。在这篇文章中,能量原理被用于神经活动和神经信息处理机制的研究,在电生理实验数据的基础上,建立神经元活动的用能量函数表示的运动方程。结果表明用能量函数表达耦合神经元的阈下电活动和动作电位,数值计算结果与用Hodgkin-Huxley方程所描述的动作电位一致。从而有可能依据能量原理从脑信息处理的角度揭示和理解大脑神经网络系统的信息表现规律。  相似文献   

17.
 In the presence of a subthreshold membrane oscillation, analog information may be encoded in the timing of spike generation phase-locked to the oscillation. With this spike timing neural code, a competitive network of inhibitory spiking neurons was shown to achieve a novel timing mechanism of neural activity selection: the neurons had higher probabilities of becoming winners if they were stimulated earlier in each oscillatory cycle. Here the timing mechanism and its robustness are studied both numerically and analytically, and the conditions to yield a given number of winners (the inhibitory neurons that remain active after the competition) are investigated. The analysis revealed that activity selection with a small number of winners is ensured for broad ranges of values of the parameters such as the strength and time constant of inhibition. In particular, the number of winners is almost unchanged for various timing differences between stimuli to different neurons. This implies that the timing mechanism is useful for such biological information processing as requires perception of a relatively small number of significant stimulus components. Received: 24 January 1996 / Accepted in revised form: 24 July 1996  相似文献   

18.
For the analysis of coding mechanisms in the insect olfactory system, a fully connected network of synchronously updated McCulloch and Pitts neurons (MC-P type) was developed [Quenet, B., Horn, D., 2003. The dynamic neural filter: a binary model of spatio-temporal coding. Neural Comput. 15 (2), 309-329]. Considering the update time as an intrinsic clock, this "Dynamic Neural Filter" (DNF), which maps regions of input space into spatio-temporal sequences of neuronal activity, is able to produce exact binary codes extracted from the synchronized activities recorded at the level of projection neurons (PN) in the locust antennal lobe (AL) in response to different odors [Wehr, M., Laurent, G., 1996. Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162-166]. Here, in a first step, we separate the populations of PN and local inhibitory neurons (LN) and use the DNF as a guide for simulations based on biological plausible neurons (Hodgkin-Huxley: H-H type). We show that a parsimonious network of 10 H-H neurons generates action potentials whose timing represents the required codes. In a second step, we construct a new type of DNF in order to study the population dynamics when different delays are taken into account. We find synaptic matrices which lead to both the emergence of robust oscillations and spatio-temporal patterns, using a formal criterion, based on a Normalized Euclidian Distance (NED), in order to measure the use of the temporal dimension as a coding dimension by the DNF. Similarly to biological PN, the activity of excitatory neurons in the model can be both phase-locked to different cycles of oscillations which remind local field potential (LFP), and nevertheless exhibit dynamic behavior complex enough to be the basis of spatio-temporal codes.  相似文献   

19.
Synchronization of the oscillatory discharge of cortical neurons could be a part of the mechanism that is involved in cortical information processing. On the assumption that the basic functional unit is the column composed of local excitatory and inhibitory cells and generating oscillatory neural activity, a network model that attains associative memory function is proposed. The synchronization of oscillation in the model is studied analytically using a sublattice analysis. In particular, the retrieval of a single memory pattern can be studied in the system, which can be derived from the original network model of interacting columns and is formally equivalent to a system of an isolated column. The network model simulated numerically shows a remarkable performance in which retrieval is achieved simultaneously for more than one memory pattern. The manifestations of this simultaneous retrieval in the network dynamics are successive transitions of the network state from a synchronized oscillation for a memory pattern to that for another memory pattern.  相似文献   

20.
 The development of synchronous bursting in neuronal ensembles represents an important change in network behavior. To determine the influences on development of such synchronous bursting behavior we study the dynamics of small networks of sparsely connected excitatory and inhibitory neurons using numerical simulations. The synchronized bursting activities in networks evoked by background spikes are investigated. Specifically, patterns of bursting activity are examined when the balance between excitation and inhibition on neuronal inputs is varied and the fraction of inhibitory neurons in the network is changed. For quantitative comparison of bursting activities in networks, measures of the degree of synchrony are used. We demonstrate how changes in the strength of excitation on inputs of neurons can be compensated by changes in the strength of inhibition without changing the degree of synchrony in the network. The effects of changing several network parameters on the network activity are analyzed and discussed. These changes may underlie the transition of network activity from normal to potentially pathologic (e.g., epileptic) states. Received: 21 May 2002 / Accepted in revised form: 3 December 2002 / Published online: 7 March 2003 Correspondence to: P. Kudela (e-mail: pkudela@jhmi.edu) Acknowledgements. This research was supported by NIH grant NS 38958.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号