首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The number of species on Earth is highly uncertain. A recent study has suggested that there are less than 2 million prokaryotic species on Earth; this Formal Comment suggests instead that there are more likely hundreds of millions or billions of species, and that the majority of these are bacteria associated with insects and other animals.

The number of species on Earth is a fundamental number in science. Yet, estimates of global biodiversity have been highly uncertain. There are presently approximately 1.9 million described species [1]. Estimates of the actual number (both described and undescribed) have ranged from the low millions into the trillions [2,3]. Furthermore, described species richness [1] is dominated by animals (1.3 million; 68%), not bacteria (approximately 10,000 species; 0.5%). Larsen and colleagues [2] summarized evidence suggesting that the majority of species on Earth may be bacteria associated with insect hosts and that bacterial richness may push global biodiversity into the hundreds of millions of species or even low billions.Louca and colleagues [4] (LEA hereafter) have claimed instead that there are only 40,100 host-associated bacterial species among all animal species and 0.8 to 1.6 million prokaryotic species overall (see their “Author summary”). Strangely, they excluded bacterial species associated with animal hosts from their estimates of total prokaryotic diversity and justified this by claiming that the estimates of Larsen and colleagues [2] were “mathematically flawed.” Here, I examine their claims and present new estimates of global biodiversity.Remarkably, all projections by LEA for host-associated bacterial richness were based on an estimate from one ant genus (Cephalotes), an estimate that is demonstrably incorrect by orders of magnitude (S1 Text). Without examining the underlying data [5], LEA estimated only 40 bacterial species among all 130 ant species in this genus. Yet, simply counting the bacterial species among the 25 sampled ant species in that genus reveals 616 unique bacterial species, of which 539 appear to be unique to the genus and 369 each unique to a single ant species (using the standard 97% cutoff for 16S divergence and data from [5]). Thus, there were >500 bacterial species among 25 ant species, not 40 bacterial species among 130 ant species. This mistake was further exacerbated by inexplicably ignoring data from the other 2 insect genera analyzed by Larsen and colleagues [2], thus maximizing the impact of their incorrect estimate for this genus.Their overall estimate of bacterial richness was also strongly influenced by their questionable assumption that all animal genera can share bacterial species (i.e., reducing their estimate of 3 million host-associated bacterial species to only 40,100). They assumed “a conservative overlap of only 0.1% between any two randomly chosen genera” for the number of bacterial species shared between animal genera. No justification was given for this value of 0.1%, nor were any alternative values explored. Furthermore, they implicitly assumed that any bacterial species can be shared between any pair of animal genera, regardless of their phylogeny, habitat, or geographic range. So, for example, a bacterial species that is a gut endosymbiont of a terrestrial herbivorous insect species endemic to Madagascar could somehow be shared with a deep-sea worm in the northern Pacific Ocean. This is ridiculous: there must be a reason why bacterial species are shared among host species and genera (e.g., shared phylogeny, location, diet). For example, broad-scale studies show that sharing of bacteria among insect hosts is associated with both host phylogeny and diet [6].LEA stated “it is known that substantial overlap exists between the microbiota of different host genera and even of distantly related animal taxa.” However, they provided no numbers to justify this “substantial overlap.” In fact, none of the papers they cited as supporting this assumption actually do (S2 Text). For example, one study [7] found 5 bacterial species shared among 5 insect genera utilizing the same type of host plant (cycads). However, LEA do not mention that this study found 1,789 unique bacterial species among just these 5 insect species (or 177 after filtering). This seems inconsistent with their estimate of only 40,100 bacterial species across all animals. In summary, rather than estimating the overlap of bacterial species among host genera, LEA simply made a number up and combined this with unrealistic, unsupported assumptions about overlap. If LEA had considered Cephalotes (which all their estimates were based on), a survey of this genus and related genera [5] found 1,019 bacterial species, with only 77 of the 616 bacterial species in Cephalotes shared with other sampled genera, and the sharing of bacterial species among hosts strongly related to host phylogeny.Numerous surveys of bacterial diversity in insects strongly suggest that there are far more than 40,100 bacterial species among all animals (8] found roughly twice as many bacterial species as those of approximately 30 insect species [5,9], and the study of 218 insect species [6] found >3.5 times as many as the study of 62 insect species. The simple fact that a study found 9,301 bacterial species among only 218 sampled insect species strongly suggests that there are more than 40,100 bacteria among all animals.Table 1Surveys of bacterial diversity among insect species.LEA incorrectly estimated that a genus of 130 ant species (Cephalotes) hosts only 40 bacterial species and subsequently assumed that all animal genera have the same low number of bacterial species. These broad surveys of bacterial species among insects suggest that many insects (including Cephalotes) host much larger numbers of bacterial species.
Insect group sampledInsect species sampledUnique bacterial species foundReferences
Ants (Cephalotes and 3 related genera)291,019Sanders and colleagues [5]
Lycaenid butterflies311,156Whitaker and colleagues [9]
Native Hawaiian insects (beetles, flies, true bugs)131,094Poff and colleagues [10]
Various insect orders622,073Colman and colleagues [8]
21 insect orders2189,301Yun and colleagues [6]
Open in a separate windowGiven these problems with the estimate of LEA, what is the actual number of bacterial species on Earth? LEA were correct that Larsen and colleagues [2] only estimated the number of species-specific bacteria per insect host species, and those estimates could be wrong. I therefore recalculated those estimates based on more direct counts of species-specific bacteria from the original studies (S3 Text). In 2]. Specifically, Larsen and colleagues [2] projected 0.209 to 5.8 billion species on Earth, of which 66% to 91% are bacteria, whereas I project 0.183 to 4.2 billion, with 58% to 88% bacteria (2] and are explained below. For each scenario, the projected number of species for each group is shown, along with the percentage of the total number of species belonging to that group (note that plants are <0.5% and are rounded down to 0%). In addition to the 4 scenarios, 4 other assumptions were explored. The first 3 involve different estimated numbers of morphologically cryptic arthropod species per morphology-based insect species (from 6 to 2 to 0; for justification, see [2]). These impact the number of animal species, and all downstream estimates for other groups. The final, fourth set of analyses assumes 6 morphologically cryptic arthropod species and that mites host negligible numbers of nematode species. Scenario 1 assumes that all animal species have a full set of bacterial, protist, and fungal endosymbionts, even if they are parasites, but that microsporidian fungi and apicomplexan protists have little or no host-specific bacterial richness. Scenario 2 assumes that symbionts have limited numbers of symbionts themselves (i.e., nematodes have an average of only one host-specific bacterial species) and that microsporidians and apicomplexans have few or no bacterial species. Scenario 3 assumes that all animal species have a full set of symbiont species and that microsporidians and apicomplexans host (on average) as many bacterial species as animal species do. Scenario 4 is identical to Scenario 1, except that it assumes that mites have reduced species richness relative to other arthropods (0.25 mites∶1 other arthropod species). Note that there is an error in Table 3, Scenario 1 in Larsen and colleagues [2]: There should be 27.2 million animal species, not 20.4. The correct number is used here. Archaean species is considered to be limited overall [2], and so is not treated separately.
Scenario 1Scenario 2Scenario 3Scenario 4
Million species% of totalMillion species% of totalMillion species% of totalMillion species% of total
6 cryptic arthropod species
Animals163.29.4163.213.7163.23.9102.09.4
Plants0.300.300.300.30
Fungi165.69.6165.613.9165.63.9104.69.6
Protists163.29.4163.213.7163.23.9102.09.4
Bacteria1,240.371.6701.858.83,721.088.3775.271.5
Total1,732.71,194.14,213.31,084.1
2 cryptic arthropod species
Animals54.49.454.413.654.43.934.09.4
Plants0.300.300.300.30
Fungi56.89.856.814.256.84.036.410.0
Protists54.49.454.413.654.43.934.09.4
Bacteria413.471.4233.958.51,240.388.2258.471.1
Total579.4399.91,406.3363.1
0 cryptic arthropod species
Animals27.29.327.213.527.23.917.09.3
Plants0.300.300.300.30
Fungi29.610.229.614.729.64.219.410.6
Protists27.29.327.213.527.23.917.09.3
Bacteria206.771.0117.058.1620.288.0129.270.6
Total291.1201.3704.5182.9
Mites host limited nematode richness, 6 cryptic arthropod species
Animals122.49.4122.411.9122.43.991.89.4
Plants0.300.300.300.30
Fungi124.89.6124.812.1124.83.994.29.6
Protists122.49.4122.411.9122.43.991.89.4
Bacteria930.271.5661.064.12,790.788.3697.771.5
Total1,300.21,030.93,160.7975.8
Open in a separate windowIn summary, the conclusions of LEA are based on an initial estimate of bacterial richness for one genus that was clearly incorrect, combined with a made-up number (and unrealistic assumptions) to estimate overlap of bacterial species among host genera. Reanalyses here suggest that bacterial richness (and the diversity of life) is more likely in the hundreds of millions or billions.  相似文献   

2.
Target 19, set by the Convention on Biological Diversity, seeks to improve the knowledge, science base, and technologies relating to biodiversity. We will fail to achieve this target unless prolific biases in the field of conservation science are addressed. We reveal that comparatively less research is undertaken in the world’s most biodiverse countries, the science conducted in these countries is often not led by researchers based in-country, and these scientists are also underrepresented in important international fora. Mitigating these biases requires wide-ranging solutions: reforming open access publishing policies, enhancing science communication strategies, changing author attribution practices, improving representation in international processes, and strengthening infrastructure and human capacity for research in countries where it is most needed.In the environmental sciences, the scientific process generates evidence for policies and practices. Published evidence indicates that the quality standards associated with peer review have been met. Publishing also provides others with access to the evidence being shared, and increasingly, to the data and methodological processes underlying it. There are, however, strong biases in the peer-reviewed literature.Biodiversity and the threats to its persistence are not uniformly distributed across the globe and therefore some areas demand comparatively greater scientific attention. If research is biased away from the most biodiverse areas, then this will accentuate the impacts of the global biodiversity crisis and reduce our capacity to protect and manage the natural ecosystems that underpin human well-being. Target 19 of the Convention on Biodiversity (CBD) states that “By 2020, knowledge, the science base, and technologies relating to biodiversity, its values, functioning, status and trends, and the consequences of its loss, are improved, widely shared and transferred, and applied” [1]. Biases in conservation science will prevent us from achieving this target.We conducted the first comprehensive analysis of publishing trends of the conservation science literature. We identified all publications from 2014 on the topic of “conservation” in the research areas of environmental sciences, ecology, biodiversity conservation, plant sciences, zoology, and geography. We searched both the Thomson Reuters Zoological Records and Web of Science Core Collection databases, which returned 10,036 scientific publications (from 1,061 journals), after the duplicate, unrelated, and incomplete records were removed. For a subset of these publications (n = 7,593, or 81%), we manually identified at least one topic country, and we determined the relative conservation importance of these countries for mammal conservation [2] as well as a broader definition of conservation importance that considers richness of vascular plants, endemic species, and functional species [3].The countries for which knowledge is sparse coincide with where research is most urgently needed. The top five countries, ranked according to relative importance for mammal conservation (i.e, Indonesia, Madagascar, Peru, Mexico, and Australia), were represented in 11.9% of the publications (Fig 1). If we consider the broader definition of conservation importance that reflects the richness of vascular plants, endemic species, and functional species, then the top five countries (i.e., Ecuador, Costa Rica, Panama, the Dominican Republic, and Papua New Guinea) are the focus of only 1.6% of publications (4,5], will continue to be populated with biased data.Open in a separate windowFig 1Global distribution of publications on biodiversity conservation (S1 Data).

Table 1

Publishing trends and representation in the International Union for Conservation of Nature (IUCN) Specialist Groups or the Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES) for (A) the countries ranked highest in terms of importance for mammal conservation [2], (B) the countries ranked highest in terms of biodiversity [3], and (C) the United States and United Kingdom, for the purposes of comparison (S1 Data).
CountryNumber publications (with % of total)Percentage publications led by an in-country institutionAverage Altmetrics score (with maximum)Number publications published open accessNumber IPBES expertsNumber IUCN chairs
A
1. Indonesia95 (1.1)2312.5 (133)951
2. Madagascar64 (0.8)1419.8 (194)7101
3. Peru49 (0.6)1015.2 (105)1120
4. Mexico228 (2.8)6812.4 (256)6294
5. Australia527 (6.5)9411.2 (192)24218
B
1. Ecuador46 (0.6)229.4 (52)610
2. Costa Rica37 (0.5)143.8 (7)340
3. Panama22 (0.3)53.8 (7)500
4. Dominican Republic6 (0.07)01.5 (2)010
5. Papua New Guinea16 (0.2)09.3 (22)100
C
US (ranked 40 for A and 157 for B)1,441 (17.8)9311.8 (434)712344
UK (ranked 170 for A and 167 for B)249 (3.1)7715 (146)111839
Open in a separate windowWith comparatively fewer publications being generated, it would be ideal for these publications to be widely shared. Open access publishing is growing in popularity, but still only 14% (n = 809) of the publications recorded in the Thomson Reuters Web of Science Core Collection database were published as open access. Only 128 of the 1,090 publications (11.7%) that focused on the ten countries of the greatest conservation importance were freely accessible (6], particularly since the research conducted in the most biodiverse countries is predominately led by researchers based elsewhere. Only 23% of the Indonesian publications, 22% of the Ecuadorian, and none of the Papua New Guinean and the Dominican Republic publications were led by researchers affiliated with local institutions (79], or a limited subset of journals [10,11] or countries [12,13]. Attribution of joint affiliations for lead authors would enable local institutions to be recognised at national levels and by international ranking systems.While peer-reviewed publications are an important component of evidence-based policy [14], on-ground change necessitates the support of a concerned public [15]. Social media outlets are important mechanisms for widely communicating research findings. Furthermore, engagement in social media contributes to social capital and community participation by creating cohesive networks and enabling the exchange of information across diverse groups [16]. Interestingly, we find evidence that the public is more interested in the research findings from biodiverse countries, as indicated by the Altmetrics score for each publication (a measure of attention generated in social media). The average Altmetrics score for the publications concerning the top five countries for investment in mammal conservation was 14.2 (n = 353). A publication concerning the US had the highest score (434), but overall, the publications on the US had a lower average, at 11.8 (n = 436) (  相似文献   

3.
4.
5.
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade.We compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Astronomy has faced the challenges of Big Data for over 20 years and continues with ever-more ambitious studies of the universe. YouTube burst on the scene in 2005 and has sparked extraordinary worldwide interest in creating and sharing huge numbers of videos. Twitter, created in 2006, has become the poster child of the burgeoning movement in computational social science [6], with unprecedented opportunities for new insights by mining the enormous and ever-growing amount of textual data [7]. Particle physics also produces massive quantities of raw data, although the footprint is surprisingly limited since the vast majority of data are discarded soon after acquisition using the processing power that is coupled to the sensors [8]. Consequently, we do not include the domain in full detail here, although that model of rapid filtering and analysis will surely play an increasingly important role in genomics as the field matures.To compare these four disparate domains, we considered the four components that comprise the “life cycle” of a dataset: acquisition, storage, distribution, and analysis (
Data Phase Astronomy Twitter YouTube Genomics
Acquisition 25 zetta-bytes/year0.5–15 billion tweets/year500–900 million hours/year1 zetta-bases/year
Storage 1 EB/year1–17 PB/year1–2 EB/year2–40 EB/year
Analysis In situ data reductionTopic and sentiment miningLimited requirementsHeterogeneous data and analysis
Real-time processingMetadata analysisVariant calling, ~2 trillion central processing unit (CPU) hours
Massive volumesAll-pairs genome alignments, ~10,000 trillion CPU hours
Distribution Dedicated lines from antennae to server (600 TB/s)Small units of distributionMajor component of modern user’s bandwidth (10 MB/s)Many small (10 MB/s) and fewer massive (10 TB/s) data movement
Open in a separate window  相似文献   

6.
The ethics of collaborative authorship. More realistic standards and better accountability are needed to enhance scientific publication and give credit where it is due     
Teixeira da Silva JA 《EMBO reports》2011,12(9):889-893
  相似文献   

7.
Immunological Mechanisms Mediating Hantavirus Persistence in Rodent Reservoirs     
Judith D. Easterbrook  Sabra L. Klein 《PLoS pathogens》2008,4(11)
Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans.Hantaviruses are negative sense, enveloped RNA viruses (family: Bunyaviridae) that are comprised of three RNA segments, designated small (S), medium (M), and large (L), which encode the viral nucleocapsid (N), envelope glycoproteins (GN and GC), and an RNA polymerase (Pol), respectively. More than 50 hantaviruses have been found worldwide [1]. Each hantavirus appears to have coevolved with a specific rodent or insectivore host as similar phylogenetic trees are produced from virus and host mitochondrial gene sequences [2]. Spillover to humans causes hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS), depending on the virus [3][5]. Although symptoms vary, a common feature of both HFRS and HCPS is increased permeability of the vasculature and mononuclear infiltration [4]. Pathogenesis of HRFS and HCPS in humans is hypothesized to be mediated by excessive proinflammatory and CD8+ T cell responses ().

Table 1

Summary of Immune Responses in Humans during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa In Vitro/In VivoTissue or Cell Typeb, Phase of Infectionc References
Innate RIG-IElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
ReducedNY-1VIn vitroHUVEC, ≤24 h p.i. [37]
TLR3ElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
IFN-βElevatedPUUV, PHV, ANDVIn vitroHSVEC, HMVEC-L, ≤24 h p.i. [36],[80]
ReducedTULV, PUUV NSsIn vitroCOS-7 and MRC5 cells, ≤24 h p.i. [32],[33]
IFN-αElevatedPUUV, HTNVIn vitroMФ, DCs, 4 days p.i. [30]
No changeHTNVIn vivoBlood, acute [81]
IRF-3, IRF-7ElevatedSNV, HTNV, PHV, ANDVIn vitroHMVEC-L, ≤24 h p.i. [33],[38]
MxAElevatedHTNV, NY-1V, PHV, PUUV, ANDV, SNV, TULVIn vitroMФ,HUVEC,HMVEC-L, 6 h–4 days p.i. [36], [39][41],[79]
MHC I and IIElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CD11bElevatedPUUVIn vivoBlood, acute [82]
CD40, CD80, CD86ElevatedHTNVIn vitroDCs, 4 days p.i. [30],[83]
NK cellsElevatedPUUVIn vivoBAL, acute [84]
Proinflammatory/Adhesion IL-1βElevatedSNV, HTNVIn vivoBlood, lungs, acute [85],[86]
IL-6ElevatedSNV, PUUVIn vivoBlood, lungs, acute [85],[87],[88]
TNF-αElevatedPUUV, SNV, HTNVIn vivoBlood, lungs, kidney, acute [85],[86],[88],[89]
ElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CCL5ElevatedSNV, HTNVIn vitroHMVEC-L, HUVEC, 12 h–4 days p.i. [38],[39],[90]
CXCL8ElevatedPUUVIn vivoBlood, acute [82]
ElevatedPUUVIn vivoMen, blood, acute [62]
ElevatedTULV, PHV, HTNVIn vitroHUVEC, MФ, 2–4 days p.i. [39],[91]
CXCL10ElevatedSNV, HTNV, PHVIn vitroHMVEC-L,HUVEC, 3–4 days p.i. [38],[39]
ElevatedPUUVIn vivoMen, blood, acute [62]
IL-2ElevatedSNV, HTNV, PUUVIn vivoBlood, lungs, acute [82],[86]
Nitric oxideElevatedPUUVIn vivoBlood, acute [92]
GM-CSFElevatedPUUVIn vivoWomen, blood, acute [62]
ICAM, VCAMElevatedPUUVIn vivoKidney, acute [87]
ElevatedHTNV, PHVIn vitroHUVEC, 3–4 days p.i. [30],[39]
E-selectinElevatedPUUVIn vivoBlood, acute [82]
CD8+ and CD4+ T cells IFN-γElevatedHTNV, SNVIn vivoBlood, CD4+,CD8+, lungs, acute [81],[86]
CD8+ElevatedDOBV, PUUV, HTNVIn vivoBlood, BAL, acute [52],[84],[93]
Virus-specific IFN-γ+CD8+ElevatedPUUV, SNVIn vivoPBMC, acute [45],[94]
Perforin, Granzyme BElevatedPUUVIn vivoBlood, acute [95]
CD4+CD25+ “activated”ElevatedDOBV, PUUVIn vivoPBMC, acute [89],[93]
IL-4ElevatedSNVIn vivoLungs, acute [86]
Regulatory “suppressor T cells”d ReducedHTNVIn vivoBlood, acute [52]
IL-10ElevatedPUUVIn vivoBlood, acute [86]
TGF-βElevatedPUUVIn vivoKidney, acute [89]
Humoral IgM, IgG, IgA, IgEElevatedAll hantavirusesIn vivoBlood [4]
Open in a separate windowaSNV, Sin Nombre virus; NY-1V, New York-1 virus; PUUV, Puumala virus; PHV, Prospect Hill virus; ANDV, Andes virus; TULV, Tula virus; HTNV, Hantaan virus; DOBV, Dobrava virus.bHUVEC, human umbilical vascular endothelial cells; HSVEC, human saphenous vein endothelial cells; HMVEC-L, human lung microvascular endothelial cells; COS-7, African green monkey kidney fibroblasts transformed with Simian virus 40; MRC5, human fetal lung fibroblasts; MФ, macrophages; DCs, dendritic cells; BAL, bronchoalveolar lavage, PBMC, human peripheral blood mononuclear cells.cAcute infection is during symptomatic disease in patients.dSuppressor T cells likely represent cells currently referred to as regulatory T cells.

Table 2

Summary of Immune Responses in Rodents during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa Host, Tissue or Cell Typeb Phase of Infectionc References
Innate TLR7ReducedSEOVMale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
RIG-IElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVNewborn rats, thalamusAcute [96]
TLR3ElevatedSEOVMale Norway rats, lungsAcute, Persistent [19]
IFN-βReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[61]
ElevatedSEOVFemale Norway rat lungsAcute [19],[61]
Mx2ReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedHTNV, SEOVMiced, fibroblasts transfected with Mx23–4 days p.i. [97]
JAK2ElevatedSEOVFemale Norway rats, lungsAcute [60]
MHC IIElevatedPUUVBank volesGenetic susceptibility [74]
Proinflammatory/Adhesion IL-1βReducedSEOVMale Norway rats, lungsPersistent [29]
IL-6ReducedSEOVMale and female Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale rats, spleenAcute [29]
TNF-αReducedHTNVNewborn miced, CD8+, spleenAcute [49],[50]
ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[42],[61]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
CX3CL1, CXCL10ReducedSEOVMale Norway rats, lungsAcute, Persistent [29]
ElevatedSEOVMale Norway rats, spleenAcute [29]
CCL2, CCL5ElevatedSEOVMale Norway rats, spleenAcute [29]
NOS2ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedHTNVMouse MФd, in vitro6 h p.i. [98]
VCAM, VEGFElevatedSEOVMale Norway rats, spleenAcute [29]
CD8+ and CD4+ T cells CD8+ReducedHTNVNewborn miced, spleenPersistent [50]
ElevatedHTNVSCID miced, CD8+ transferred, spleenPersistence [49]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
IFN-γElevatedSEOVFemale Norway rats, lungsPersistent [61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedHTNVNewborn miced, CD8+ T cells, spleenAcute [50]
ReducedHTNVNewborn miced, CD8+ T cells, spleenPersistent [99]
IFN-γRElevatedSEOVFemale Norway rats, lungsAcute, Persistent [60]
ReducedSEOVMale Norway rats, lungsPersistent [60]
T cellsElevatedSEOVNude ratsPersistence [47]
ElevatedHTNVNude miced Persistence [100]
IL-4ReducedSEOVMale Norway rats, lungsAcute, Persistent [61]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
Regulatory Regulatory T cellsElevatedSEOVMale Norway rats, lungsPersistent [42],[61]
FoxP3ElevatedSEOVMale Norway rats, lungsPersistent [29],[42],[61]
TGF-βElevatedSEOVMale Norway rats, lungsPersistent [29]
SNVDeer mice, CD4+ T cellsPersistent [48]
IL-10ReducedSEOVMale Norway rats, lungs and spleenAcute, Persistent [29]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
Humoral IgGElevatedSNVDeer micePersistent [12],[57]
ElevatedSEOVNorway ratsPersistent [16],[17]
ElevatedHTNVField micePersistent [15]
ElevatedPUUVBank volesPersistent [14]
ElevatedBCCVCotton ratsPersistent [18],[58]
Open in a separate windowaSEOV, Seoul virus; HTNV, Hantaan virus, PUUV, Puumala virus; SNV, Sin Nombre virus; PUUV, Puumala virus; BCCV, Black Creek Canal virus.bMФ, macrophages.cAcute infection is <30 days p.i. and persistent infection is ≥30 days p.i.d Mus musculus, non-natural reservoir host for hantaviruses.In contrast to humans, hantaviruses persistently infect their reservoir hosts, presumably causing lifelong infections [6]. Hantaviruses are shed in saliva, urine, and feces, and transmission among rodents or from rodents to humans occurs by inhalation of aerosolized virus in excrement or by transmission of virus in saliva during wounding [7],[8]. Although widely disseminated throughout the rodent host, high amounts of hantaviral RNA and antigen are consistently identified in the lungs of their rodent hosts, suggesting that the lungs may be an important site for maintenance of hantaviruses during persistent infection [9][18]. Hantavirus infection in rodents is characterized by an acute phase of peak viremia, viral shedding, and virus replication in target tissues, followed by a persistent phase of reduced, cyclical virus replication despite the presence of high antibody titers (Figure 1) [12][16], [18][20]. The onset of persistent infection varies across hantavirus–rodent systems, but generally the acute phase occurs during the first 2–3 weeks of infection and virus persistence is established thereafter (Figure 1).Open in a separate windowFigure 1Kinetics of Hantavirus Infection in Rodents.Adapted from Lee et al. [15] and others [12][14],[16],[18],[20], the kinetics of relative hantaviral load in blood (red), saliva (green), and lung tissue (blue) and antibody responses (black) during the acute and persistent phases of infection are represented. The amount of genomic viral RNA, infectious virus titer, and/or relative amount of viral antigen have been incorporated as relative hantaviral load. The antibody response is integrated as the relative amount of anti-hantavirus IgG and/or neutralizing antibody titers.Hantavirus infection alone does not cause disease, as reservoir hosts and non-natural hosts (e.g., hamsters infected with Sin Nombre virus [SNV] or Choclo virus) may support replicating virus in the absence of overt disease [12],[14],[16],[18],[21],[22]. Our primary hypothesis is that certain immune responses that are mounted in humans during hantavirus infection are suppressed in rodent reservoirs to establish and maintain viral persistence, while preventing disease (相似文献   

8.
Intrinsic Disorder in Pathogen Effectors: Protein Flexibility as an Evolutionary Hallmark in a Molecular Arms Race     
Macarena Marín  Vladimir N. Uversky  Thomas Ott 《The Plant cell》2013,25(9):3153-3157
Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants’ innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein–protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.Plants and pathogens are entangled in a continual arms race. While host organisms have developed complex and dynamic immune systems able to recognize a wide range of pathogens and to discriminate them from beneficial microbes (Jones and Dangl, 2006; Medzhitov, 2007), bacterial pathogens have evolved refined adaptation strategies to overcome the plant’s innate immune system. Among these ingenious adaptations are effector proteins. Most of these proteins are secreted via the type III secretion system (TTSS) into the host cytoplasm, where they manipulate the immune signaling and the physiology of plant cells and thereby improve bacterial fitness within the host (Dean, 2011).Plant–pathogen interactions are highly dynamic processes, both from the evolutionary and the physiological point of view. Here, we postulate that they are equally dynamic at the protein-structure level. This is based on our finding that numerous effector proteins are predicted to be intrinsically disordered (ID) and that this feature may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. Intrinsic disorder has so far been postulated to preferentially occur in eukaryotic proteins. While on average ∼20% of the eukaryotic proteome harbors long (>50 residues) ID segments, these regions are only predicted at low abundance (8% on average) in bacterial proteomes (Dunker et al., 2000). The most likely reason for this discrepancy is the lack of efficient mechanisms to protect unfolded proteins from degradation (Ward et al., 2004). However, when surveying genomes of pathogenic bacteria with the widely used PONDR VL-XT program (Romero et al., 2001), we observed that not only the average percentage of sequence disorder, but most strikingly long (>50 residues) stretches of intrinsic disorder are highly overrepresented in secreted effectors, with especially high levels in phytopathogenic bacteria (Pseudomonas syringae, ∼39%; Ralstonia solanacearum, ∼70%; Xanthomonas spp, ∼77%) (Supplemental Table 1 online). This striking enrichment of unstructured regions strongly suggests positive evolutionary selection of intrinsic disorder in effector proteins and highlights their dynamic nature.

Table 1.

Predictions of Intrinsic Disorder in Effectors and Whole Proteomes of Different Bacterial Species
OrganismAverage Percentage of Disordered Residues
Percentage of Proteins Harboring ID Regions >50 Residues
All ProteinsTTSS EffectorsAll ProteinsTTSS Effectors
P. syringae38.635.6
phaseolicola 1448A26.142.010.152.4
syringae B728a26.241.410.757.1
tomato DC300026.439.710.234.4
R. solanacearum42.669.6
 GMI100029.243.511.966.7
Xanthomonas sp49.275.7
 X. campestris pv vesicatoria 85-1029.650.913.569.6
 X. oryzae pv oryzae KACC1033129.746.312.582.3
 X. campestris pv campestris ATCC 3391329.144.613.368.9
S. enterica22.118.5
enterica ser. typhimurium LT223.021.57.019.2
Open in a separate windowDisorder parameters of representative effectors (see Supplemental Table 1 online) were calculated per species (highlighted in bold) and were compared to the values calculated for the proteomes from which the majority of the effectors were extracted. For completeness, effectors belonging to protein families absent in these strains were extracted from closely related strains (see Supplemental Table 1 online). Proteomes of P. syringae pv phaseolicola (strain 1448A; 5170 proteins), P. syringae pv syringae (strain B728a; 5088 proteins), P. syringae pv tomato (strain DC3000; 5618 proteins), R. solanacearum (strain GMI1000; 5108 proteins), X. campestris pv vesicatoria (strain 85-10; 4726 proteins), X. oryzae pv oryzae (strain KACC10331; 4065 proteins), X. campestris pv campestris (strain ATCC 33913; 4178 proteins), and S. typhimurium (strain LT2 ; 4555 proteins) were downloaded from the National Center for Biotechnology Information server (http://www.ncbi.nlm.nih.gov/genome/). Additionally, parameters were individually calculated for the different strains. Intrinsic disorder predictions were calculated with the PONDR VL-XT program (Romero et al., 2001). Here, scores below and above 0.5 indicate residues predicted to be ordered and disordered, respectively. The average percentage of sequence disordered was calculated as the mean value of the percentage of disordered residues (PONDR score > 0.5) per protein from all proteins. The percentage of long ID regions was calculated as the percentage of proteins harboring ID regions >50 residues.  相似文献   

9.
Nooks and Crannies in Type VI Secretion Regulation     
Christophe S. Bernard  Yannick R. Brunet  Erwan Gueguen  Eric Cascales 《Journal of bacteriology》2010,192(15):3850-3860
  相似文献   

10.
Risk of Bias in Reports of In Vivo Research: A Focus for Improvement     
Malcolm R. Macleod  Aaron Lawson McLean  Aikaterini Kyriakopoulou  Stylianos Serghiou  Arno de Wilde  Nicki Sherratt  Theo Hirst  Rachel Hemblade  Zsanett Bahor  Cristina Nunes-Fonseca  Aparna Potluru  Andrew Thomson  Julija Baginskitae  Kieren Egan  Hanna Vesterinen  Gillian L. Currie  Leonid Churilov  David W. Howells  Emily S. Sena 《PLoS biology》2015,13(10)
  相似文献   

11.
Announcing the JCB DataViewer,a browser-based application for viewing original image files     
Emma Hill 《The Journal of cell biology》2008,183(6):969-970
  相似文献   

12.
The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified?     
Arthur Günzl 《Eukaryotic cell》2010,9(8):1159-1170
  相似文献   

13.
Mass Spectrometry-based Workflow for Accurate Quantification of Escherichia coli Enzymes: How Proteomics Can Play a Key Role in Metabolic Engineering     
Mathieu Trauchessec  Michel Jaquinod  Aline Bonvalot  Virginie Brun  Christophe Bruley  Delphine Ropers  Hidde de Jong  Jér?me Garin  Gwena?lle Bestel-Corre  Myriam Ferro 《Molecular & cellular proteomics : MCP》2014,13(4):954-968
  相似文献   

14.
Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression     
Amrita Srivastav  Sameet Mehta  Angelica Lindlof  Sujata Bhargava 《Plant signaling & behavior》2010,5(7):775-784
  相似文献   

15.
On the Extent of Tyrosine Phosphorylation in Chloroplasts     
Qintao Lu  Stefan Helm  Anja R?diger  Sacha Baginsky 《Plant physiology》2015,169(2):996-1000
Reanalysis of published mass spectrometry data on Tyr-phosphorylated chloroplast proteins indicates that the majority of peptide spectrum matches reporting Tyr phosphorylation are ambiguous.Tyr phosphorylation is a controversial issue in plant phosphoproteomics, ever since early analyses reported up to 5% Tyr phosphorylation in Arabidopsis (Arabidopsis thaliana), despite the lack of a classical Tyr kinase in the Arabidopsis genome (Sugiyama et al., 2008; de la Fuente van Bentem and Hirt, 2009). The same controversy extends to the phosphorylation of chloroplast proteins. In the past 20 years, several indications for Tyr phosphorylation in chloroplasts were reported, and Rubisco is annotated as Tyr phosphorylated protein (www.arabidopsis.org). Initially, Tullberg et al. (1998) found the protein Tyr kinase inhibitor genistein to inhibit the phosphorylation of thylakoid membrane proteins. Supported by the observed stability of some thylakoid phosphoproteins against acid and base hydrolysis, a characteristic property of phospho-Tyr, the authors argue that Tyr phosphorylation of thylakoid membrane proteins is vital for short-term acclimation responses. Similar biochemical properties were observed for autophosphorylation of the chloroplast sensor kinase CSK (Puthiyaveetil et al., 2008). Support for Tyr phosphorylation came from the cross-reactivity of thylakoid membrane proteins and Calvin cycle enzymes (e.g. Rubisco) with phospho-Tyr-specific antibodies (Forsberg and Allen, 2001; Fedina et al., 2008; Ghelis et al., 2008). With the same set of methods, no Tyr phosphorylation was observed in mitochondrial proteins (Forsberg and Allen, 2001).The above reported data are indirect hints for Tyr phosphorylation, and none of the applied methods is sufficiently specific to serve as solid evidence. For example, all phospho-Tyr-specific antibodies have significant cross reactivity with phospho-Ser and phospho-Thr when these have an aromatic amino acid in the +1 position (Zerweck et al., 2009). Using phospho-Tyr-specific antibodies, Forsberg and Allen (2001) found genistein inhibition of light-harvesting complex II phosphorylation with a 50% inhibition of initial activity of around 15 µm. Surprisingly, the same inhibition kinetics were observed with phospho-Thr-specific antibodies, suggesting a lack of specificity of either genistein or the phospho-amino acid antibodies, or both. So far, direct proof for Tyr phosphorylation in chloroplasts by phospho-amino acid analyses is missing. However, mass spectrometry-based phosphoproteomics experiments with plant cell extracts reported phospho-Tyr-containing peptides in chloroplasts but surprisingly not in abundant thylakoid membrane proteins or Calvin cycle enzymes. A recent meta-analysis collated data from 27 published studies and several internal data sets, resulting in a cumulative data set with 5% Tyr-phosphorylated peptides in the entire data set and 12% to 19% in the mitochondria (van Wijk et al., 2014). In this data set, almost 30% of the plastid phosphoproteins are flagged as Tyr phosphorylated (90 proteins from around 300; see supplemental table 5B in van Wijk et al., 2014), standing in stark contrast to dedicated plastid phosphoproteome analyses that identified less than 1% Tyr phosphorylation in the cellular phosphoproteome and none in chloroplast proteins (Reiland et al., 2009).Many of the phospho-Tyr-containing peptides were identified in analyses that applied multistage activation to elevate fragment ion intensity in spectra dominated by the neutral loss of phosphoric acid from phospho-Ser and/or phospho-Thr, sometimes in combination with searches for the phospho-Tyr-specific immonium ion at mass-to-charge ratio 216.0426 (see table 1 in van Wijk et al., 2014). In one instance, phospho-Tyr-specific antibodies were used to enrich Tyr phosphorylated proteins from Arabidopsis full cell extracts (Mithoe et al., 2012). Remarkably, there is almost no overlap in phospho-Tyr peptide identification between the different studies (Mithoe et al., 2012; Wu et al., 2013; van Wijk et al., 2014). Although this could be the result of diverse acquisition methods, enrichment strategies, and data interpretation software in different analyses (Bodenmiller et al., 2007), the low reproducibility and the discrepancies in phospho-Tyr detection among different analyses require further attention, because both are characteristic for incorrect peptide spectrum matches. This is a specific problem here, because false discovery rates (FDRs) accumulate in cumulated data sets.Therefore, we decided to assess the quality of matches to Tyr phosphorylated peptides by a dedicated reanalysis of the original data and benchmarked the robustness of peptide identification by using different software tools for spectra interpretation. Different tools use different scoring schemes to calculate identification probabilities from the fragment ion spectrum; however, they all use basic rules for spectrum matching, such as consecutive b- or y-ion series, matching of the highest intensity peaks to peptide fragments, and identification of matches to plausible derivatives of the major fragments such as losses of ammonia or water. Because of the differences in scoring the identified fragment ions, software tools may interpret spectra differently. However, since the basic rules for peptide matching apply to all identifications, it is clear that robust and reliable identifications are made by different tools that agree on the same interpretation for a spectrum. A specific aspect in the interpretation of phosphopeptide spectra is the assignment of the exact modification site. Common database matching software is usually unsuitable to distinguish modifications at closely spaced amino acids, and it is insufficiently explicit when spectra do not allow distinguishing between alternatives. To circumvent this problem, specialized software tools were developed that score spectra for alternative phosphorylation sites within the peptide sequence by searching for specific fragment ions supporting one or another phosphorylation site (MacLean et al., 2008; Martin et al., 2010).We extracted from the different data sets Tyr-phosphorylated chloroplast proteins and extracted the spectrum information in the form of a MASCOT generic file (mgf) from either PhosphAT (van Wijk et al., 2014) or PRIDE (Mithoe et al., 2012). This resulted in 139 spectra identifying 53 unique peptides representing putative Tyr phosphorylation sites in 53 chloroplast proteins (Supplemental Table S1A; Supplemental Data Set S1). This set of spectra was reanalyzed with MASCOT to assess the significance of the identifications and two alternative software tools established for database searches: PEAKS, a database matching software with a de novo sequencing option (Ma et al., 2003); and Proteome Discoverer with the search engine SEQUEST (Thermo Scientific). With the original search parameters of dynamic phosphorylation of Ser, Thr, and Tyr, dynamic oxidation of Met, fixed carbamidomethylation of Cys, and maximum of two missed cleavages at mass tolerances for precursor and fragment ion matching of 20 ppm/0.5 D (Wu et al., 2013), 50 ppm/0.8 D (internal data sets in van Wijk et al., 2014), and 10 ppm/0.9 D (Mithoe et al., 2012), 11 out of 53 unique peptides were identified with the reported amino acid sequence above the MASCOT significance threshold of P < 0.05, while 42 mgf matchings were reported as insignificant or gave rise to an unrelated peptide identification (www.matrixscience.com; Supplemental Table S1B). The lack of significance correlates with the relaxed search parameters and the many degrees of freedom allowed for peptide matching. With a variation of the above mass tolerance settings, PEAKS identified five (9%) and Proteome Discoverer identified 11 (21%) out of 53 peptides from the data set at a fully relaxed FDR, of which three (6%) identifications by PEAKS and one (2%) by Proteome Discoverer were significant (van Wijk et al., 2014)Presented are those peptides that were identified at least once with one of the alternative tools at one of the indicated mass tolerance settings: precursor tolerance/tandem mass spectrometry/ion match tolerance 50 ppm/0.8 D, 20 ppm/0.5 D, or 10 ppm/0.9 D. We reported all identifications irrespective of the score. Identifications considered significant are labeled with asterisks. Provided is the FDR at which the identification was made. Proteome Discoverer has two FDR settings: below 1% (stringent) or below 5% (relaxed). All matches above a 5% FDR threshold are considered insignificant. The PEAKS FDR is calculated individually for every peptide. Dashes indicate that the peptide was not identified.
PeptidePEAKS
Proteome Discoverer
50 ppm/0.8 D20 ppm/0.5 D10 ppm/0.9 D50 ppm/0.8 D20 ppm/0.5 D10 ppm/0.9 D
VIYELIDDVR0%*
SLKPFDLYTIGNSVK>5%
RSSVLYPASLK>5%
RSFNVYYEDK>5%
RRSMEPSNVYVASNSTEMEIGSHDIVK>5%>5%
LDESTGIVDYDMLEK0%*0%*0%*
IMESISVGGEAGGAGGAYSYNALKR>5%
GTFYGKTEEKEPSK>5%>5%>5%
GSRYVPAAFLTGLLDPVSSR>5%
GLAYDTSDDQQDITR0%*<1%*<1%*<1%*
ETYQEEQLK>5%
EAYLDLVKKIR100%
YKIMGGVPVSHFNIYK19.20%68.80%>5%<1%*<1%*
YIDWEVLK>5%>5%
Open in a separate windowThe small overlap in the identification of phosphopeptides between different software tools from the same spectra is uncommon (Kapp et al., 2005) and specific for the data set assembled here. This is illustrated by two control sets comprising either 114 randomly chosen phosphopeptides from PhosphAT (set A) or 295 mgf files from Wu et al. (2013; set B, without acetylated and pY-containing peptides). PEAKS identified 42 (37%) peptides from set A and 158 (54%) peptides from set B with the reported amino acid sequence. Proteome Discoverer identified 36 (32%) peptides from set A and 81 (27%) peptides from set B, while 27 (24%) peptides in set A and 67 (23%) peptides in set B were identified by both software tools (Supplemental Table S2). This suggests that there is no major identification problem of different software tools with the mgf compressed files, except for a small detection bias of Proteome Discoverer (see below). However, since we cannot exclude that some spectra were incorrectly matched because of compression artifacts, we next assessed the detection rate of Tyr phosphorylated peptides with uncompressed files. To this end, we downloaded the original raw files that resulted in the reporting of 27 unique Tyr phosphorylated peptides in 27 chloroplast proteins (van Wijk et al., 2014; Supplemental Table S1A). At FDRs of 2% and 5%, respectively, neither PEAKS nor Proteome Discoverer identified any of the 27 phospho-Tyr-containing peptides in chloroplast proteins, suggesting that the detection problem highlighted above is a property of poor spectrum quality (i.e. a small number of fragment ions and a weak signal-to-noise separation). Under these circumstances, ambiguous matches are reported as exemplified in Figure 1 for the spectrum that gave rise to the reported sequence pYRAANAEPK (http://phosphat.uni-hohenheim.de). In this example, all three software tools rated the match as not significant, because the quality of the spectrum is insufficient for an unambiguous match, suggesting that the original assignment was ambiguous.Open in a separate windowFigure 1.Different interpretations for the spectrum that gave rise to the reported sequence pYRAANAEPK. The reported sequence was retrieved from MASCOT (top). PEAKS also identifies a phosphorylated Tyr within the sequence but assigns the spectrum to a different peptide (YEYSSENK) in a nonchloroplast protein (middle; At4g24430). The best Proteome Discoverer match identified carbamidomethylated Cys and phosphorylated Ser within the sequence IELGLVCSE (bottom). There is a greater diversity of possible assignments in large search spaces (many degrees of freedom; see text); thus, care must be taken in the definition of search parameters and in the significance settings of the different identification softwares. Note that none of the identifications shown here is considered significant by the software used for the matching.Fourteen peptides from the original data set were identified as Tyr phosphorylated with at least one alternative software tool, but the identification scores for 10 of these are connected with high FDRs (Supplemental Fig. S1). For example, the fragment ion spectrum of RRSMEPSNVYVASNSTEMEIGSHDIVK contains few matches, unassigned high peaks, and no consecutive row of b- or y-ions, and the phosphorylation site is assigned to Ser-13 instead of Tyr-10 by PhosCalc (MacLean et al., 2008; Supplemental Fig. S1; Supplemental Table S3). Similarly, the spectrum quality for ETYQEEQLK is poor by the above standards (Supplemental Fig. S1), and PhosCalc is unable to distinguish between phosphorylation at Tyr-3 or Thr-2 (Supplemental Table S3). The same ambiguity exists for the singly phosphorylated peptide GLAYDTSDDQQDITR and the amino acids Tyr-4 and Thr-6 (Supplemental Table S3). This peptide from Rubisco activase was previously identified as Ser/Thr phosphorylated by the characteristic dominant neutral loss peak of phosphoric acid in the fragment spectrum generated by collision-induced dissociation (Reiland et al., 2009; Thingholm et al., 2009). The only significant PEAKS and PhosCalc match was obtained for the phosphorylation of LDESTGIVDYDMLEK at Tyr-10 and with relaxed PhosCalc parameters for VIYELIDDVR at Tyr-3 (Supplemental Table S3; serine hydroxymethyltransferase3 [SHM3; AT4G32520] and translation initiation factor-2 [IF-2; AT1G17220]). The mgf files for both spectra were not recognized by Proteome Discoverer because they are highly compressed and contain only matching peaks (Supplemental Fig. S1).We started the analysis here with the goal to identify high-confidence peptide spectrum matches to phospho-Tyr-containing peptides in chloroplast proteins. However, after critical scrutiny with different software tools, de novo sequencing, and cross comparison with information in the literature, we have to conclude that the analyzed 139 spectra do not unambiguously identify phospho-Tyr in chloroplast proteins, with the possible exception of LDESTGIVDYDMLEK in SHM3 and VIYELIDDVR in IF-2. It is clear that our analysis is not suitable to prove individual reported peptide spectrum matches wrong, because spectrum assignment is often a matter of interpretation (for an example, see Fig. 1). However, our analysis illustrates that the evidence for Tyr phosphorylation in chloroplasts is weak and that the identifications of Tyr phosphorylated chloroplast proteins are uncertain, as illustrated by insignificant and contradicting peptide spectrum matches obtained with three established software tools. This shows that Tyr phosphorylation remains a rare posttranslational modification in this organelle, which is supported by low reproducibility of phospho-Tyr detection between different laboratories. From the collated data sets reporting chloroplast Tyr phosphorylated proteins (see above; Supplemental Table S1A), 77 out of 79 unique peptides were identified exclusively in one laboratory, and only two peptides (i.e. MGLVNESDSEDSSEHDKDVDDEKYWSE and YAGTEVEFNDVK) were identified by different laboratories (http://phosphat.uni-hohenheim.de).Although we were unsuccessful in unambiguously identifying phospho-Tyr in chloroplast proteins, we do not claim by any means that it does not occur. In fact, there is no reason why chloroplasts should not use the phosphorylation of Tyr residues in signaling and why a Tyr-specific protein kinase should be absent from this organelle. Recent years uncovered that even bacterial systems utilize Tyr phosphorylation as an important part of their signaling, and Rubisco is clearly Tyr phosphorylated in Rhodomicrobium vannielii (Mann and Turner, 1988). In prokaryotes, Tyr phosphorylation is catalyzed by different kinases that have no homologs in eukaryotes (the bacterial tyrosine kinases and the odd Tyr kinases) but also by Hanks-type kinases that resemble eukaryotic dual-specificity kinases (Chao et al., 2014). Similarly, Tyr phosphorylation was also reported for cyanobacteria (Warner and Bullerjahn, 1994), and a dual-specificity kinase was identified in tobacco (Nicotiana tabacum) chloroplasts (Cho et al., 2001). Thus, there are several reasons why it is possible or even likely that chloroplasts use Tyr phosphorylation in their signaling; however, our search for clear-cut evidence for Arabidopsis chloroplast proteins was unsuccessful, and the putative targets for Tyr phosphorylation remain elusive.

Supplemental Data

The following supplemental materials are available.  相似文献   

16.
Focus on Weed Control: Herbicides as Weed Control Agents: State of the Art: I. Weed Control Research and Safener Technology: The Path to Modern Agriculture     
Hansjoerg Kraehmer  Bernd Laber  Chris Rosinger  Arno Schulz 《Plant physiology》2014,166(3):1119-1131
The purpose of modern industrial herbicides is to control weeds. The species of weeds that plague crops today are a consequence of the historical past, being related to the history of the evolution of crops and farming practices. Chemical weed control began over a century ago with inorganic compounds and transitioned to the age of organic herbicides. Targeted herbicide research has created a steady stream of successful products. However, safeners have proven to be more difficult to find. Once found, the mode of action of the safener must be determined, partly to help in the discovery of further compounds within the same class. However, mounting regulatory and economic pressure has changed the industry completely, making it harder to find a successful herbicide. Herbicide resistance has also become a major problem, increasing the difficulty of controlling weeds. As a result, the development of new molecules has become a rare event today.Modern industrial herbicide research begins with the analysis and definition of research objectives. A major part of this lies in the definition of economically important weeds in major arable crops (Kraehmer, 2012). Weed associations change slowly over time. It is important, therefore, to foresee such changes. Today’s weed associations result from events in the distant past. They are associated with the history of crops and the evolution of farm management. In Europe and the Americas, some large-acre crops such as winter oilseed rape and spring oilseed rape (canola), both derived from Brassica spp., and soybean (Glycine max) have attained their current importance only within the last 100 years. Other Old World crops, such as cereals, have expanded over a very long time span and were already rather widespread in Neolithic times (Zohary et al., 2012). The dominance of crop species in agricultural habitats only left room for weed species that could adapt to cultivation technologies. Changes in crop management and the global weed infestation have happened in waves. A major early factor in Europe was presumably the grain trade in the Roman period (Erdkamp, 2005). The Romans spread their preferred crops and, unintentionally, associated weed seeds throughout Europe, Asia, and Africa. A second wave of global vegetation change started in the 16th century after the discovery of the Americas. Crops and weeds were distributed globally by agronomists and botanists. Alien species started to spread on all continents. A third phase can be seen in the 19th century with the industrialization of agriculture and the breeding of competitive crop varieties. The analysis of weed spectra in arable fields grew from this historical background. Weeds are plants interfering with the interests of people (Kraehmer and Baur, 2013), which is why they have been controlled by farmers for millennia.Chemical weed control began just about a century ago with a few inorganic compounds, such as sulfuric acid, copper salts, and sodium chlorate (Cremlyn, 1991). The herbicidal activity of 2,4-dichlorophenoxyacetic acid was detected in the 1940s (Troyer, 2001). Büchel et al. (1977) and Cremlyn (1991), Worthington and Hance (1991). Targeted herbicide research began in the 1950s. In the early days, herbicide candidates progressed from screens purely on the basis of their having biology that would satisfy farmers’ requirements. Mode of action (MoA) studies did not play a major role in the chemical industry prior to the 1970s. Analytical tools were developed and the rapid elucidation of plant pathways and in vitro-based screen assays were used from the 1980s onward. However, in the 1990s and beyond, ever-increasing regulatory and economic pressures have changed the situation of the industry completely, and to satisfy the new requirements, selection criteria beyond biological activity have needed to be applied. Herbicide resistance in weeds has developed into a more serious problem that now constrains the application of certain types of herbicides in some markets. Finally, the introduction of crops resistant to cheap herbicides and of glyphosate-resistant soybean, in particular, took value out of the market and resulted in an enormous economic pressure on the herbicide-producing industry. As a result of this changing and more difficult landscape, the development of new molecules is now a rare event.

Table I.

History of chemical weed control innovationsPost, Postemergence application; Pre, preemergence application, based on data from Cremlyn (1991), Worthington and Hance (1991), Büchel et al. (1977), Herbicide Resistance Action Committee (www.hracglobal.com), and others.
MoA, Target SiteChemical FamilyExamplesUseEarliest Reports
UnspecificInorganic herbicidesH2SO4, Cu2SO4, FeSO4, NaAsO2Total1874
UncouplersDinitrophenolesdinitro-ortho-cresolPost, dicots1934
AuxinsAryloxyalkanoic acid derivatives2,4-Dichlorophenoxyacetic acidPost, dicots in cereals1942
Microtubule organizationArylcarbamatesPropham, chloroprophamPre, monocots in various crops1946
Lipid synthesisChloroaliphatic acidsTCA, dalaponPre, monocots in various crops1947
ThiocarbamatesEPTC, triallatePre, monocots and dicots in various crops1954
PSIIArylureasMonuron, diuron, isoproturon, linuronPre and Post, monocots and dicots in various crops1951
1,3,5-TriazinesAtrazine, simazinePre and Post, broad spectrum in corn1952
PyridazinesChloridazonPre, dicots in sugar beet1962
UracilsBromacil, terbacil, lenacilSoil applied, broad spectrum in various crops1963
BiscarbamatesPhenmediphamPost, dicots in sugar beet1968
1,2,4-TriazinonesMetribuzinPre in soybean1971
Very-long-chain fatty acid biosynthesisChloroacetamidesAllidochlor, alachlorPre, monocots and dicots1956
PSIBipyridyliumsDiquat, paraquatNonselective1958
Protoporphyrinogen oxidaseDiphenyl ethersNitrofen, acifluorfenPre and Post, various crops1960
OxadiazolesOxadiazonRice, nonselective1969
Microtubule assemblyDinitroanilinesTrifluralin, pendimethalinPre against monocots and dicots1960
Cellulose biosynthesisNitrilesDichlobenilPlantations1960
5-Enolpyruvylshikimate 3-phosphate synthaseGlysGlyphosatePost, nonselective1971
Phytoene desaturasePyridazinonesNorflurazonPre and Post in cotton1973
ACCaseAryloxyphenoxy propanoatesDiclofop, fluazifopPost, grasses1975
Cyclohexane dionesAlloxydim, sethoxydimPost, grasses1976
Gln synthetaseGlufosinateNonselective1981
AHAS or ALSSulfonylureasChlorsulfuron, metsulfuronMonocots and dicots in various crops1982
ImidazolinonesImazapyr, imazethapyrNonselective or selective in soybean1983
Pyrimidinyl benzoatesBispyribac sodiumRice1994
HPPDPyrazolynate, sulcotrioneVarious crops, monocots and dicots1984
Open in a separate windowThis article is structured into three main topics. First, it provides an historic overview of the development of weed control history and of screening tools over the past 100 years. Thereafter, we concentrate on the use of MoA studies as a tool for optimizing chemical structures based upon knowledge of their receptors. Finally, we review the invention and use of safener technologies as a tool for improving the crop selectivity of herbicides. In a companion review (Kraehmer, et al., 2014), we address the serious challenges that farmers now face because of the evolution of herbicide resistance in weeds and the types of innovations that are urgently required.  相似文献   

17.
Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution     
Victoria Kasprowicz  Yu-Hoi Kang  Michaela Lucas  Julian Schulze zur Wiesch  Thomas Kuntzen  Vicki Fleming  Brian E. Nolan  Steven Longworth  Andrew Berical  Bertram Bengsch  Robert Thimme  Lia Lewis-Ximenez  Todd M. Allen  Arthur Y. Kim  Paul Klenerman  Georg M. Lauer 《Journal of virology》2010,84(3):1656-1663
Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.Hepatitis C virus (HCV) persists in the majority of acutely infected individuals, potentially leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The cellular immune response has been shown to play a significant role in viral control and protection from liver disease. Phenotypic and functional studies of virus-specific T cells have attempted to define the determinants of a successful versus an unsuccessful T-cell response in viral infections (10). So far these studies have failed to identify consistent distinguishing features between a T-cell response that results in self-limiting versus chronic HCV infection; similarly, the impact of viral persistence on HCV-specific memory T-cell formation is poorly understood.Interleukin-7 (IL-7) receptor alpha chain (CD127) is a key molecule associated with the maintenance of memory T-cell populations. Expression of CD127 on CD8 T cells is typically only observed when the respective antigen is controlled and in the presence of significant CD4+ T-cell help (9). Accordingly, cells specific for persistent viruses (e.g., HIV, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) have been shown to express low levels of CD127 (6, 12, 14) and to be dependent on antigen restimulation for their maintenance. In contrast, T cells specific for acute resolving virus infections, such as influenza virus, respiratory syncytial virus (RSV), hepatitis B virus (HBV), and vaccinia virus typically acquire expression of CD127 rapidly with the control of viremia (5, 12, 14). Results for HCV have been inconclusive. The expected increase in CD127 levels in acute resolving but not acute persisting infection has been found, while a substantial proportion of cells with high CD127 expression have been observed in long-established chronic infection (2). We tried to reconcile these observations by studying both subjects with acute and chronic HCV infection and identified the presence of antigen as the determinant of CD127 expression.Using HLA-peptide multimers we analyzed CD8+ HCV-specific T-cell responses and CD127 expression levels in acute and chronic HCV infection. We assessed a cohort of 18 chronically infected subjects as well as 9 individuals with previously resolved infection. In addition, we longitudinally studied 9 acutely infected subjects (5 individuals who resolved infection spontaneously and 4 individuals who remain chronically infected) (Tables (Tables11 and and2).2). Informed consent in writing was obtained from each patient, and the study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval from the local institutional review boards. HLA-multimeric complexes were obtained commercially from Proimmune (Oxford, United Kingdom) and Beckman Coulter (CA). The staining and analysis procedure was as described previously (10). Peripheral blood mononuclear cells (PBMCs) were stained with the following antibodies: CD3 from Caltag; CD8, CD27, CCR7, CD127, and CD38 from BD Pharmingen; and PD-1 (kindly provided by Gordon Freeman). Primer sets were designed for different genotypes based on alignments of all available sequences from the public HCV database (http://hcvpub.ibcp.fr). Sequence analysis was performed as previously described (8).

TABLE 1.

Patient information and autologous sequence analysis for patients with chronic and resolved HCV infection
CodeGenotypeStatusEpitope(s) targetedSequencea
02-031bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
00-261bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
99-242aChronicA2 NS3 1073-1083P: CINGVCWTV
No recognitionA: S-S--L---
A2 NS3 1406-1415P: KLVALGINAV
No recognitionA: A-RGM-L---
A2 NS5B 2594-2602P: ALYDVVTKL
A: no sequence
1111aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
A2 NS5 2594-2602P: ALYDVVTKL
A: ---------
00X3aChronicA2 NS5 2594-2602P: ALYDVVTKL
No recognitionA: -----IQ--
O3Qb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03Sb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
02A1aChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
01N1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03H1aChronicA2 NS3 1073-1083P: CINGVCWTV
Full recognitionA: ----A----
01-391aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03-45b1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
06P3aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
GS127-11aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-61aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-81bChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-161aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-201aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
04D4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
01-49b1ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
A2 NS3 1406-1415P: KLVALGINAV
01-311ResolvedA1 NS3 1436-1444P: ATDALMTGY
B57 NS5 2629-2637P: KSKKTPMGF
04N1ResolvedA1 NS3 1436-1444P: ATDALMTGY
01E4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
98A1ResolvedA2 NS3 1073-1083P: CINGVCWTV
00-10c1ResolvedA24 NS4 1745-1754P: VIAPAVQTNW
O2Z1ResolvedA1 NS3 1436-1444P: ATDALMTGY
99-211ResolvedB7 CORE 41-49P: GPRLGVRAT
OOR1ResolvedB35 NS3 1359-1367P: HPNIEEVAL
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.bHIV coinfection.cHBV coinfection.

TABLE 2.

Patient information and autologous sequence analysis for patients with acute HCV infection
CodeGenotypeOutcomeEpitope targeted and time analyzedSequencea
5541aPersistingA2 NS3 1073-1083P: CINGVCWTV
wk 8A: ---------
wk 30A: ---------
03-321aPersistingB35 NS3 1359-1367P: HPNIEEVAL
wk 8A: ---------
No recognition (wk 36)A: S--------
04-111a (1st)Persisting (1st) Resolving (2nd)A2 NS5 2594-2602P: ALYDVVTKL
1b (2nd)A: no sequence
00231bPersistingA1 NS3 1436-1444P: ATDALMTGY
Diminished (wk 7)A: --------F
Diminished (wk 38)A: --------F
A2 NS3 1073-1083P: CINGVCWTV
wk 7A: ---------
wk 38A: ---------
A2 NS3 1406-1415P: KLVALGINAV
Full recognition (wk 7)A: --S-------
Full recognition (wk 38)A: --S-------
3201ResolvingA2 NS3 1273-1282P: GIDPNIRTGV
5991ResolvingA2 NS3 1073-1083P: CINGVCWTV
11441ResolvingA2 NS3 1073-1083P: CINGVCWTV
B35 NS3 1359-1367P: HPNIEEVAL
06L3aResolvingB7 CORE 41-49P: GPRLGVRAT
05Y1ResolvingA2 NS3 1073-1083P: CINGVCWTV
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.In established persistent infection, CD8+ T-cell responses against HCV are infrequently detected in blood using major histocompatibility complex (MHC) class I tetramers and are only observed in a small fraction of those sampled (10). We were able to examine the expression of CD127 on antigen-specific T cells in such a group of 18 individuals. We observed mostly high levels of CD127 expression (median, 66%) on these populations (Fig. (Fig.1a),1a), although expression was higher on HCV-specific T-cell populations from individuals with resolved infection (median, 97%; P = 0.0003) (Fig. 1a and c). Importantly, chronically infected individuals displayed CD127 expression levels over a much broader range than resolved individuals (9.5% to 100% versus 92 to 100%) (Fig. (Fig.1a1a).Open in a separate windowFIG. 1.Chronically infected individuals express a range of CD127 levels on HCV-specific T cells. (a) CD127 expression levels on HCV-specific T-cell populations in individuals with established chronic or resolved infection. While individuals with resolved infection (11 tetramer stains in 9 subjects) uniformly express high levels of CD127, chronically infected individuals (21 tetramer stains in 18 subjects) express a wide range of CD127 expression levels. (b) CD127 expression levels are seen to be highly dependent on sequence match with the autologous virus, based on analysis of 9 responses with diminished recognition of the autologous virus and 8 responses with intact epitopes. (c) CD127 expression levels on HCV-specific T-cell B7 CORE 41-49-specific T cells from individual 01-49 with resolved HCV infection (left-hand panel). Lower CD127 expression levels are observed on an EBV-specific T-cell population from the same individual (right-hand panel). APC-A, allophycocyanin-conjugated antibody. (d) Low CD127 levels are observed on A2 NS3 1073-1083 HCV-specific T cells from individual 111 with chronic HCV infection in whom sequencing revealed an intact autologous sequence.Given the relationship between CD127 expression and antigenic stimulation as well as the potential of HCV to escape the CD8 T-cell response through viral mutation, we sequenced the autologous circulating virus in subjects with chronic infection (Table (Table1).1). A perfect match between the optimal epitope sequence and the autologous virus was found for only 8 responses. These were the only T-cell populations with lower levels of CD127 expression (Fig. (Fig.1a,1a, b, and d). In contrast, HCV T-cell responses with CD127 expression levels comparable to those observed in resolved infection (>85%) were typically mismatched with the viral sequence, with some variants compatible with viral escape and others suggesting infection with a non-genotype 1 strain (10) (Fig. (Fig.1).1). Enzyme-linked immunospot (ELISPOT) assays using T-cell lines confirmed the complete abrogation of T-cell recognition and thus antigenic stimulation in cases of cross-genotype mismatch (10). Responses targeting the epitope A1-143D expressed somewhat lower levels of CD127 (between 70% and 85%). Viral escape (Y to F at position 9) in this epitope has been shown to be associated with significantly diminished but not fully abolished recognition (11a), and was found in all chronically infected subjects whose T cells targeted this epitope. Thus, expression of CD127 in the presence of viremia is closely associated with the capacity of the T cell to recognize the circulating virus.That a decrease in antigenic stimulation is indeed associated with the emergence of CD127-expressing CD8 T cells is further demonstrated in subject 111. This subject with chronic infection targeted fully conserved epitopes with T cells with low CD127 expression; with clearance of viremia under antiviral therapy, CD127-negative HCV-specific CD8 T cells were no longer detectable and were replaced by populations expressing CD127 (data not shown). Overall these data support the notion that CD127 expression on HCV-specific CD8+ T-cell populations is dependent on an absence of ongoing antigenic stimulation.To further evaluate the dynamic relationship between antigenic stimulation and CD127 expression, we also analyzed HCV-specific T-cell responses longitudinally during acute HCV infection (Fig. (Fig.2a).2a). CD127 expression was generally low or absent during the earliest time points. After resolution of infection, we see a contraction of the HCV-specific T-cell response together with a continuous increase in CD127 expression, until virtually all tetramer-positive cells express CD127 approximately 6 months after the onset of disease (Fig. (Fig.2a).2a). A similar increase in CD127 expression was not seen in one subject (no. 554) with untreated persisting infection that maintained a significant tetramer-positive T-cell population for an extended period of time (Fig. (Fig.2a).2a). Importantly, sequence analysis of the autologous virus demonstrated the conservation of this epitope throughout persistent infection (8). In contrast, subject 03-32 (with untreated persisting infection) developed a CD8 T-cell response targeting a B35-restricted epitope in NS3 from which the virus escaped (8). The T cells specific for this epitope acquired CD127 expression in a comparable manner to those controlling infection (Fig. (Fig.2a).2a). In other subjects with persisting infection, HCV-specific T-cells usually disappeared from blood before the time frame in which CD127 upregulation was observed in the other subjects.Open in a separate windowFIG. 2.CD127 expression levels during acute HCV infection. (a) CD127 expression levels on HCV-specific T cells during the acute phase of HCV infection (data shown for 5 individuals who resolve and two individuals who remain chronically infected). (b) HCV RNA viral load and CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) for chronically infected individual 00-23. PEG-IFN-α, pegylated alpha interferon. (c) Fluorescence-activated cell sorter (FACS) plots showing longitudinal CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) from individual 00-23.We also characterized the levels of CD127 expression on HCV-specific CD4+ T-cell populations with similar results: low levels were observed during the acute phase of infection and increased levels in individuals after infection was cleared (data not shown). CD127 expression on CD4 T cells could not be assessed in viral persistence since we failed to detect significant numbers of HCV-specific CD4+ T cells, in agreement with other reports.In our cohort of subjects with acute HCV infection, we had the opportunity to study the effect of reencounter with antigen on T cells with high CD127 expression in 3 subjects in whom HCV viremia returned after a period of viral control. Subject 00-23 experienced viral relapse after interferon treatment (11), while subjects 05-13 and 04-11 were reinfected with distinct viral isolates. In all subjects, reappearance of HCV antigen that corresponded to the HCV-specific T-cell population was associated with massive expansion of HCV-specific T-cell populations and a decrease in CD127 expression on these T cells (Fig. (Fig.22 and and3)3) (data not shown). In contrast, T-cell responses that did not recognize the current viral isolate did not respond with an expansion of the population or the downregulation of CD127. This was observed in 00-23, where the sequence of the A1-restricted epitope 143D was identical to the frequent escape mutation described above in chronically infected subjects associated with diminished T-cell recognition (Fig. (Fig.2b2b and and3a).3a). In 05-13, the viral isolate during the second episode of viremia contained a variant in one of the anchor residues of the epitope A2-61 (Fig. (Fig.2d).2d). These results show that CD127 expression on HCV-specific T cells follows the established principles observed in other viral infections.Open in a separate windowFIG. 3.Longitudinal phenotypic changes on HCV-specific T cells. (a) HCV RNA viral load and CD127 expression (%) levels on A2 NS5B 2594-2602 HCV-specific T cells for individual 04-11. This individual was administered antiviral therapy, which resulted in a sustained virological response. Following reinfection, the individual spontaneously cleared the virus. (b) Longitudinal frequency of A2 NS5B 2594-2602 HCV-specific T cells and PD-1 expression levels (mean fluorescent intensity [MFI]) for individual 04-11. (c) Longitudinal analysis of 04-11 reveals the progressive differentiation of HCV-specific A2 259F CD8+ T cells following repetitive antigenic stimulation. FACS plots show longitudinal CD127, CD27, CD57, and CCR7 expression levels on A2 NS5B 2594-2602 tetramer-positive cells from individual 04-11. PE-A, phycoerthrin-conjugated antibody.In addition to the changes in CD127 expression for T cells during reencounter with antigen, we detected comparable changes in other phenotypic markers shortly after exposure to viremia. First, we detected an increase in PD-1 and CD38 expression—both associated with recent T-cell activation. Additionally, we observed a loss of CD27 expression, a feature of repetitive antigenic stimulation (Fig. (Fig.3).3). The correlation of CD127 and CD27 expression further supports the notion that CD127 downregulation is a marker of continuous antigenic stimulation (1, 7).In conclusion we confirm that high CD127 expression levels are common for detectable HCV-specific CD8+ T-cell populations in chronic infection and find that this phenotype is based on the existence of viral sequence variants rather than on unique properties of HCV-specific T cells. This is further demonstrated by our data from acute HCV infection showing that viral escape as well as viral resolution is driving the upregulation of CD127. We also show that some, but not all, markers typically used to phenotypically describe virus-specific T cells show a similar dependence on cognate HCV antigen. Our data further highlight that sequencing of autologous virus is vital when interpreting data obtained in chronic HCV infection and raise the possibility that previous studies, focused on individuals with established chronic infection, may have been confounded by antigenic variation within epitopes or superinfection with different non-cross-reactive genotypes. Interestingly, it should be pointed out that this finding is supported by previous data from both the chimpanzee model of HCV and from human HBV infection (3, 13).Overall our data clearly demonstrate that the phenotype of HCV-specific CD8+ T cells is determined by the level of antigen-specific stimulation. The high number of CD127 positive virus-specific CD8+ T cells that is associated with the presence of viral escape mutations is a hallmark of chronic HCV infection that clearly separates HCV from other chronic viral infections (4, 14).  相似文献   

18.
Proteomics of Saccharomyces cerevisiae Organelles     
Elena Wiederhold  Liesbeth M. Veenhoff  Bert Poolman    Dirk Jan Slotboom 《Molecular & cellular proteomics : MCP》2010,9(3):431-445
  相似文献   

19.
Plasmid pAMS1-Encoded,Bacteriocin-Related “Siblicide” in Enterococcus faecalis     
Christine M. Sedgley  Don B. Clewell  Susan E. Flannagan 《Journal of bacteriology》2009,191(9):3183-3188
  相似文献   

20.
Characterization of the Cpx Regulon in Escherichia coli Strain MC4100     
Nancy L. Price  Tracy L. Raivio 《Journal of bacteriology》2009,191(6):1798-1815
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号