首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Actin cytoskeletal reorganization and membrane trafficking are important for spine morphogenesis. Here we investigated whether the small GTPase, ADP-ribosylation factor 6 (ARF6), which regulates actin dynamics and peripheral vesicular trafficking, is involved in the regulation of spine formation. The developmental expression pattern of ARF6 in mouse hippocampus was similar to that of the post-synaptic density protein-95, and these molecules colocalized in mouse hippocampal neurons. Overexpression of a constitutively active ARF6 mutant in cultured hippocampal neurons decreased the spine density, whereas a dominant-negative ARF6 mutant increased the density. These results demonstrate a novel function for ARF6 as a key regulator of spine formation.  相似文献   

2.
Dendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formation/maintenance, thereby slowing spine morphogenesis. As spines are largely devoid of TLN, its exclusion from the filopodia surface appears to be required in this maturation process. Using HeLa cells and primary hippocampal neurons, we demonstrate that surface removal of TLN involves internalization events mediated by the small GTPase ADP-ribosylation factor 6 (ARF6), and its activator EFA6A. This endocytosis of TLN affects filopodia-to-spine transition, and requires Rac1-mediated dephosphorylation/release of actin-binding ERM proteins from TLN. At the somato-dendritic surface, TLN and EFA6A are confined to distinct, flotillin-positive membrane subdomains. The co-distribution of TLN with this lipid raft marker also persists during its endosomal targeting to CD63-positive late endosomes. This suggests a specific microenvironment facilitating ARF6-mediated mobilization of TLN that contributes to promotion of dendritic spine development.  相似文献   

3.
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation.  相似文献   

4.
The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.  相似文献   

5.
Migration of epithelial cells is essential for tissue morphogenesis, wound healing, and metastasis of epithelial tumors. Here we show that ARNO, a guanine nucleotide exchange factor for ADP-ribosylation factor (ARF) GTPases, induces Madin-Darby canine kidney epithelial cells to develop broad lamellipodia, to separate from neighboring cells, and to exhibit a dramatic increase in migratory behavior. This transition requires ARNO catalytic activity, which we show leads to enhanced activation of endogenous ARF6, but not ARF1, using a novel pulldown assay. We further demonstrate that expression of ARNO leads to increased activation of endogenous Rac1, and that Rac activation is required for ARNO-induced cell motility. Finally, ARNO-induced activation of ARF6 also results in increased activation of phospholipase D (PLD), and inhibition of PLD activity also inhibits motility. However, inhibition of PLD does not prevent activation of Rac. Together, these data suggest that ARF6 activation stimulates two distinct signaling pathways, one leading to Rac activation, the other to changes in membrane phospholipid composition, and that both pathways are required for cell motility.  相似文献   

6.
A Role for ARF6 and ARNO in the regulation of endosomal dynamics in neurons   总被引:1,自引:1,他引:0  
During development, neuronal processes extend, branch and navigate to ultimately synapse with target tissue. We have shown a regulatory role for ARNO and ARF6 in dendritic branching and axonal elongation and branching during neuritogenesis, particularly with respect to cytoskeletal dynamics. Here, we have examined the role of ARF6 and the ARF GEF ARNO in endosomal dynamics during neurite elongation in hippocampal neurons. Axonal and dendritic endosomes were labeled by expression of the endosomal marker, endotubin. Expression of endotubin-green fluorescent protein resulted in targeting to tubular-vesicular structures throughout the somatodendritic and axonal domains. These endosomal structures did not colocalize with conventional early or late endosomal markers or with the synaptic vesicle marker, SV2. However, they did label with internalized lectin, indicating that they are endosomal structures. Expression of catalytically inactive ARNO (ARNO-E156K) or inactive ARF6 (ARF6-T27N) caused a redistribution of endotubin to the cell surface of the axons and dendrites. In contrast, expression of these constructs had no effect upon the distribution of SV2-positive structures. Furthermore, expression of inactive ARF1 (ARF1-T31N) did not change endotubin distribution. These results suggest that endotubin labels a distinct endosomal structure in neurons and that ARNO and ARF6 mediate neurite extension through the regulation of this compartment.  相似文献   

7.
8.
Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses.  相似文献   

9.
ARF6 in the nervous system   总被引:1,自引:0,他引:1  
Actin cytoskeleton dynamics and membrane trafficking are tightly connected and are among the most important driving forces of neuronal development, basic synaptic transmission events, and synaptic plasticity. One group of proteins involved in coordination of these two processes is the family of ADP ribosylation factors (ARFs) regulating actin dynamics, lipid modification and membrane trafficking. ARF6 is the only member of the ARF family that can simultaneously regulate actin cytoskeleton changes and membrane exchange between plasma membrane and endocytic compartments. The presence of ARF6 and its guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in the brain, as well as its capability to regulate several aspects of neuronal development and synaptic plasticity, has been recently demonstrated. The main purpose of this review is to present the current knowledge about how ARF6 can influence morphological processes crucial for proper formation of the neuronal circuits in the brain, including dendrite and axon differentiation, development of dendritic arbor complexity and dendritic spine formation. Potential effects of ARF6 on synaptic events resulting from its ability to control exo- and endocytosis will be also discussed.  相似文献   

10.
The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a G(s)-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization.  相似文献   

11.
12.
Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.  相似文献   

13.
Mental disorders, such as schizophrenia or Alzheimer’s disease, are associated with impaired synaptogenesis and/or synaptic communication. During development, neurons assemble into neuronal networks, the primary supracellular mediators of information processing. In addition to the orchestrated activation of genetic programs, spontaneous electrical activity and associated calcium signaling have been shown to be critically involved in the maturation of such neuronal networks. We established an in vitro model that recapitulates the maturation of neuronal networks, including spontaneous electrical activity. Upon plating, mouse primary hippocampal neurons grow neurites and interconnect via synapses to form a dish-wide neuronal network. Via live cell calcium imaging, we identified a limited period of time in which the spontaneous activity synchronizes across neurons, indicative of the formation of a functional network. After establishment of network activity, the neurons grow dendritic spines, the density of which was used as a morphological readout for neuronal maturity and connectivity. Hence, quantification of neurite outgrowth, synapse density, spontaneous neuronal activity, and dendritic spine density allowed to study neuronal network maturation from the day of plating until the presence of mature neuronal networks. Via acute pharmacological intervention, we show that synchronized network activity is mediated by the NMDA-R. The balance between kynurenic and quinolinic acid, both neuro-active intermediates in the tryptophan/kynurenine pathway, was shown to be decisive for the maintenance of network activity. Chronic modulation of the neurotrophic support influenced the network formation and revealed the extreme sensitivity of calcium imaging to detect subtle alterations in neuronal physiology. Given the reproducible cultivation in a 96-well setup in combination with fully automated analysis of the calcium recordings, this approach can be used to build a high-content screening assay usable for neurotoxicity screening, target identification/validation, or phenotypic drug screening.  相似文献   

14.
The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.  相似文献   

15.
A number of signaling molecules are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway by G protein-coupled receptors. In this study, we have demonstrated that α(2B)-adrenergic receptor (α(2B)-AR) interacts with ADP-ribosylation factor 1 (ARF1), a small GTPase involved in vesicle-mediated trafficking, in an agonist activation-dependent manner and that the interaction is mediated through a unique double Trp motif in the third intracellular loop of the receptor. Interestingly, mutation of the double Trp motif and siRNA-mediated depletion of ARF1 attenuate α(2B)-AR-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) without altering receptor intracellular trafficking, whereas expression of the constitutively active mutant ARF1Q71L and ARNO, a GDP-GTP exchange factor of ARF1, markedly enhances the activation of Raf1, MEK1, and ERK1/2. These data strongly demonstrate that the small GTPase ARF1 modulates ERK1/2 activation by α(2B)-AR and provide the first evidence indicating a novel function for ARF1 in regulating the MAPK signaling pathway.  相似文献   

16.
Endocytosis of the mu-opioid receptor (MOPr) has been shown to play a protective role against the development of tolerance to opioid drugs by facilitating receptor reactivation and recycling. It has been further demonstrated, that the opioid-mediated and ADP-ribosylation factor (ARF)-dependent activation of phospholipase D2 (PLD2) is a prerequisite for MOPr endocytosis. In this study, we investigated which particular ARF protein is involved in opioid-mediated PLD2 activation and what are the mechanisms of ARF function in MOPr trafficking and signaling. By coexpressing the MOPr and dominant negative or constitutively active ARF mutants in human embryonic kidney (HEK) 293 cells and primary cultured cortical neurons as well as by using siRNA technology, we identified the ARF6 protein to be involved in the regulation of MOPr endocytosis. We also found that expression of an effector domain mutant of ARF6, which is incapable of activating PLD, blocked agonist-induced endocytosis suggesting that ARF6 function in MOPr trafficking is PLD2-mediated. Analogously, opioid-mediated activation of PLD2 is blocked in the presence of dominant negative ARF6 mutants. Finally, we also showed that ARF6 protein influences the recycling/reactivation of internalized MOPr and thus modulates agonist-induced MOPr desensitization. Together, these results provide evidence that ARF6 protein regulates MOPr trafficking and signaling via PLD2 activation and hence affects the development of opioid receptor desensitization and tolerance.  相似文献   

17.
SNX26, a brain-enriched RhoGAP, plays a key role in dendritic arborization during early neuronal development in the neocortex. In mature neurons, it is localized to dendritic spines, but little is known about its role in later stages of development. Our results show that SNX26 interacts with PSD-95 in dendritic spines of cultured hippocampal neurons, and as a GTPase-activating protein for Cdc42, it decreased the F-actin content in COS-7 cells and in dendritic spines of neurons. Overexpression of SNX26 resulted in a GTPase-activating protein activity-dependent decrease in total protrusions and spine density together with dramatic inhibition of filopodia-to-spine transformations. Such effects of SNX26 were largely rescued by a constitutively active mutant of Cdc42. Consistently, an shRNA-mediated knockdown of SNX26 significantly increased total protrusions and spine density, resulting in an increase in thin or stubby type spines at the expense of the mushroom spine type. Moreover, endogenous expression of SNX26 was shown to be bi-directionally modulated by neuronal activity. Therefore, we propose that in addition to its key role in neuronal development, SNX26 also has a role in the activity-dependent structural change of dendritic spines in mature neurons.  相似文献   

18.
The main cellular Ca(2+) sensor, calmodulin (CaM), interacts with and regulates several small GTPases, including Rac1. The present study revealed high binding affinity of Rac1 for CaM and uncovered two new essential binding domains in Rac1: the polybasic region, important for phosphatidylinositol-4-phosphate 5-kinase (PIP5K) interaction, and the adjacent prenyl group. CaM inhibition increased Rac1 binding to PIP5K and induced an extensive phosphatidylinositol 4,5-bisphosphate (PI4,5P(2) )-positive tubular membrane network. Immunofluorescence demonstrated that the tubules were plasma membrane invaginations resulting from an ADP-ribosylation factor 6 (ARF6)-dependent and clathrin-independent pathway. The role of Rac1 in this endocytic route was analyzed by expressing constitutively active and inactive mutants. While active Rac1 impaired tubulation, the inactive mutant enhanced it. Intriguingly, inactive mutant expression elicited tubulation by recruiting PIP5K and inhibiting Rac1 at the plasma membrane. Accordingly, CaM inhibition inactivated Rac1 and increased Rac1/PIP5K interaction. Therefore, our findings highlight an important new role for Rac1 and CaM in controlling clathrin-independent endocytosis.  相似文献   

19.
Viral infection during fetal or neonatal stages increases the risk of developing neuropsychiatric disorders such as schizophrenia and autism spectrum disorders. Although neurons express several key regulators of innate immunity, the role of neuronal innate immunity in psychiatric disorders is still unclear. Using cultured neurons and in vivo mouse brain studies, we show here that Toll‐like receptor 3 (TLR3) acts through myeloid differentiation primary response gene 88 (MYD88) to negatively control Disrupted in schizophrenia 1 (Disc1) expression, resulting in impairment of neuronal development. Cytokines are not involved in TLR3‐mediated inhibition of dendrite outgrowth. Instead, TLR3 signaling suppresses expression of several psychiatric disorder‐related genes, including Disc1. The impaired dendritic arborization caused by TLR3 activation is rescued by MYD88 deficiency or DISC1 overexpression. In addition, TLR3 activation at the neonatal stage increases dendritic spine density, but narrows spine heads at postnatal day 21 (P21), suggesting a long‐lasting effect of TLR3 activation on spinogenesis. Our study reveals a novel mechanism of TLR3 in regulation of dendritic morphology and provides an explanation for how environmental factors influence mental health.  相似文献   

20.
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2-mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号