首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
中国生物多样性就地保护的研究与实践   总被引:9,自引:0,他引:9  
马建章  戎可  程鲲 《生物多样性》2012,20(5):551-558
中国是世界上生物多样性最丰富的地区之一,但面临着较大的生态衰退风险。中国生物多样性受到的威胁来自包括人口众多、经济发展模式单一落后、工业化进程加快、气候变化和外来物种入侵等多种因素。生物多样性的就地保护对于维护国家生态安全具有重要意义,同时也是中国可持续发展的需要。本文就中国生物多样性就地保护的研究成果和保护成就进行了回顾,提出了未来应该着重加强的研究领域。中国生物多样性的就地保护研究与实践主要集中在生物多样性资源调查、濒危物种管理和自然保护区建设等方面。中国政府在生物多样性就地保护领域开展了大量卓有成效的工作,发布实施了一系列的保护行动规划,不断提高了生物多样性的保护水平。中国的生物多样性就地保护经过了由数量发展到质量发展的阶段后,未来的研究重点应该集中在生物多样性形成与维持机制、生物多样性受胁原因与响应机制、生物多样性长期监测与评估、自然保护区有效管理和自然保护区立法等方面。  相似文献   

2.
Global biodiversity is decreasing as a result of human activities. In many parts of the world, this decrease is due to the destruction of natural habitats. The European perspective is different. Here, traditional agricultural landscapes developed into species-rich habitats. However, the European biodiversity heritage is strongly endangered. One of the countries where this biodiversity is best preserved is Romania. We analyse the possible changes in Romania's land-use patterns and their possible benefits and hazards with respect to biodiversity. As model group, we used butterflies, whose habitat requirements are well understood. We determined the ecological importance of different land-use types for the conservation of butterflies, underlining the special importance of Romania's semi-natural grasslands for nature conservation. We found that increasing modern agriculture and abandonment of less productive sites both affect biodiversity negatively — the former immediately and the latter after a lag phase of several years. These perspectives are discussed in the light of the integration of Romania into the European Union.  相似文献   

3.
Future battlegrounds for conservation under global change   总被引:2,自引:0,他引:2  
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.  相似文献   

4.
Climate and land-use changes are among the most important drivers of biodiversity loss and, moreover, their impacts on biodiversity are expected to increase further in the 21st century. In this study, the future impact of climate and land-use changes on Anatolian ground squirrels (Spermophilus xanthoprymnus) was assessed. Accordingly, a hierarchical approach with two steps was used. First, ecological niche modelling was used to assess the impact of climate change in areas accessible to Anatolian ground squirrels through dispersal (i.e. the impact of climate change). Second, based on the habitat preferences of ground squirrels, land-use data were used to assess the impact of land-use change in suitable bioclimatic areas for Anatolian ground squirrels under present and future conditions (i.e. the combined impact of both changes). Also, priority areas for the conservation of Anatolian ground squirrels were identified based on in-situ climate change refugia. This study represents a first attempt to combine niche modelling and land-use data for a species in Anatolia, one of the most vulnerable regions to the drivers of biodiversity loss, because it is the region where three of biodiversity hotspots meet, and interact. Habitat suitability (i.e. suitable habitats across suitable bioclimatic areas) was projected to decline by 19–69% in the future (depending on the scenario), mainly due to the loss of suitable bioclimatic areas (47–77%, depending on the scenario) at lower elevations and in the western part of the central Anatolia and in the eastern Anatolia, suggesting that Anatolian ground squirrels will contract their range in the future, mainly due to climate change. Thus, in-situ climate change refugia were projected mainly in the eastern and southeastern parts of the central Anatolia, suggesting these regions as priority areas for the conservation of Anatolian ground squirrels.  相似文献   

5.
Many conservationists are now convinced that the expansion of the world system of protected areas combined with appropriate levels of biodiversity persistence within human-modified landscapes would drastically mitigate the announced impoverishment of tropical biotas. In this context, an inherent/intrinsic biodiversity ability to persist and recover within human-modified landscapes has emerged as a ‘trump card’ in the conservation battle, renewing our hope in a more sustainable development of the tropical region. However, this optimistic perspective on the conservation value of human-modified landscapes sounds, a priori, a little unrealistic in face of the current knowledge on the nature of human environments and the spectrum of native species that is likely to persist there. Rather than relying on illusory levels of biodiversity resilience and consequent flexible land-use regulations, our real trump card reposes on a radical and ambitious shift from freely exploited landscapes to strictly managed ones, despite the misleading noise produced by those voices advocating for immediate and almost unlimited access to natural resources. Otherwise, we are condemning future human populations to live in biologically impoverished and fragile environments with limited opportunities for life support.  相似文献   

6.
Research on the interactions between human behaviour and ecological systems tends to focus on the direct effects of human activities on ecosystems, such as biodiversity loss. There is also increasing research effort directed towards ecosystem services. However, interventions to control people's use of the environment alter the incentives that natural resource users face, and therefore their decisions about resource use. The indirect effects of conservation interventions on biodiversity, modulated through human decision-making, are poorly studied but are likely to be significant and potentially counterintuitive. This is particularly so where people are dependent on multiple natural resources for their livelihoods, when both poverty and biodiversity loss are acute. An inter-disciplinary approach is required to quantify these interactions, with an understanding of human decision-making at its core; otherwise, predictions about the impacts of conservation policies may be highly misleading.  相似文献   

7.
Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could ‘spare’ further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables), and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U) increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone, even in fenced remnants set aside for conservation. These results have important implications for the viability of land-sparing as a strategy for balancing landscape-level conservation and production goals in agricultural landscapes.  相似文献   

8.
Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children's perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children's understanding of a rainforest environment. We investigated children's perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles) and others under-represented (particularly insects and annelids) relative to their contribution to total biomass and species richness. Scientists and naturalists must continue to emphasise the diversity and functional importance of lesser-known taxa through public communication and outdoor events to aid invertebrate conservation and to ensure that future generations are inspired to become naturalists themselves.  相似文献   

9.
The study of ecological perturbation gradients provides a unique opportunity to investigate the utility of various biocomplexity indices. The ability of four measures of biocomplexity (quadratic entropy, taxonomic entropy, total complexity and total diversity) and their components to quantify the nature and degree of perturbation in plant communities was assessed by how closely each measure reflected the trends in biocomplexity that are expected to occur along a gradient of decreasing perturbation. The measures were applied to two landscapes, located near Sudbury, Canada and Harjavalta, Finland, perturbed by nickel–copper smelter emissions. Taxonomic entropy was determined to be the most useful of the four measures as it has a clear information-theoretical meaning, the relative contributions of classical diversity and taxonomic information can be easily isolated, and its computation is straightforward relative to the other measures. Additionally, it is relatively insensitive to community evenness, thereby rendering it less sample-size dependant and a more appropriate measure to use for comparisons between studies as well as for conservation and restoration purposes.  相似文献   

10.
Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management.  相似文献   

11.
李彬彬 《生物多样性》2020,28(5):596-237
随着新冠肺炎(COVID-19)的暴发, 野生动物、生物多样性和人类健康的关系再次引起广泛讨论。近20年来, 国际社会对于生物多样性与健康的研究日益增多, 并将它作为生物多样性保护与研究的重要方向之一。One Health作为一个新的理念框架, 通过交叉学科的研究和行动来推动包括人、所有其他动物及环境的健康。这个理念被不同国家、国际组织及协定所接纳及推广, 包括《生物多样性公约》等。本文通过总结近些年生物多样性对健康的影响方式、One Health的定义与发展历史、进入生物多样性议程的过程, 提出中国应用One Health改进相关野生动物管理以降低公共卫生危机的可能性的建议, 以及One Health框架内增强生物多样性保护所需的研究方向。One Health在中国的应用与发展应重视生物多样性研究和保护在其中的作用, 利用在景观生态学、群落内物种关系动态变化、气候变化影响、土地利用变化模式与趋势的研究, 与人类健康相结合, 提高One Health在应对公共健康和环境健康风险方面的准确性与及时性。同时, 需要加强我国在野生动物管理方面的投入和力度, 增强生物多样性保护与公共健康的联系, 将预警与干预措施前移, 减少疾病暴发带来的社会经济成本。  相似文献   

12.
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats - irrespective of land-use type - harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads – even subject to anti-poaching controls - were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats.  相似文献   

13.
The assessment of the value of ecosystem services is a valuable tool for biodiversity conservation that can facilitate better environmental policy decision-making and land management, and can help land managers develop interventions to compensate for biodiversity loss at the patch level. Previous studies have suggested that it is appropriate to assess the value of biodiversity for conservation planning by considering both the condition of the landscape and the spatial configuration of adjacent land uses that can be reflected as a proximity effect. This research examines the influence of spatial proximity on biodiversity conservation from the ecosystem service perspective based on the assumption that the variation in the proximity effect caused by land cover change has positive or negative impacts on ecological services. Three factors related to the spatial characteristics of the landscape were considered in this approach: the relative artificiality of the land cover types, the distance decay effect of patches and the impact of one land cover type on others. The proximity effect change (PEC) parameter reflected the relationship between the spatial proximity effect and biodiversity conservation. The results of a quantitative and spatial comparative analysis of the proposed method and the conventional method in Yingkou for the periods of 2000–2005 and 2005–2010 showed that the former can account for the temporal and spatial changes in ecosystem services for biodiversity conservation that were caused by patch-level changes as well as the interaction between the altered and adjacent patches from a spatial perspective. The metric can also identify the most critical areas for biodiversity protection and inform the efficient allocation of limited land resources for nature conservation to maximize the benefit to biodiversity by guiding the process of land-use change, particularly urbanization and agriculture. Future studies should focus on the other important factors that are applicable to the assessment of the value of biodiversity conservation in socio-ecological systems, where society and nature are mutually capable of fulfilling their roles.  相似文献   

14.
We identify two processes by which humans increase genetic exchange among groups of individuals: by affecting the distribution of groups and dispersal patterns across a landscape, and by affecting interbreeding among sympatric or parapatric groups. Each of these processes might then have two different effects on biodiversity: changes in the number of taxa through merging or splitting of groups, and the extinction/extirpation of taxa through effects on fitness. We review the various ways in which humans are affecting genetic exchange, and highlight the difficulties in predicting the impacts on biodiversity. Gene flow and hybridization are crucially important evolutionary forces influencing biodiversity. Humans alter natural patterns of genetic exchange in myriad ways, and these anthropogenic effects are likely to influence the genetic integrity of populations and species. We argue that taking a gene-centric view towards conservation will help resolve issues pertaining to conservation and management. Editor's suggested further reading in BioEssays A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture Abstract.  相似文献   

15.
Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.  相似文献   

16.
This study determined the effects of land-use practice had on the rate and extent of bush encroachment in a mesic savanna in KwaZulu-Natal, South Africa. Changes in woody cover were measured for 1 km2 sites in areas under communal, commercial and conservation land-use systems for the period between 1937 and 2000. Land users from each area were interviewed to gain the histories of each area and to determine how the changes in woody cover had impacted them and whether anything was being done to counteract the spread of trees and shrubs on their land. Bush encroachment occurred across all three of the land-use types in the 67-year period between 1937 and 2000. The results showed that land-use practice had enormous impacts on the process of bush encroachment. The communal site showed a decrease in grass (21%) and tree (5%) cover and an increase in shrub cover (13%). At the commercial site, there was a considerable decrease in grass cover (46%) and moderate increase in shrub cover (10%) and a massive increase in tree cover (36%). The area under conservation showed a substantial decrease in grass cover (47%), a slight decrease in shrub cover (19%) and a massive increase in tree cover (66%). The perceived causes of these changes were fairly similar amongst the different land users. The changes were mostly not perceived to be a problem for the communal land users. The main advantages mentioned were increased woody resources for building and firewood and increased browse availability. The commercial and conservation land users perceived the changes to have significant negative connotations including the loss of grazing land and biodiversity and secondary invasion of encroached areas by alien plant species. Despite these perceptions, very little has been done to combat bush encroachment in the commercial and conservation land use systems.  相似文献   

17.
Land-use change is a major driver of the global biodiversity crisis, mainly via the fragmentation and loss of natural habitat. Although land-use changes will accelerate to meet humankind's growing demand for agricultural products, conservation planning rarely considers future land uses and how they may affect the connectivity of ecological networks. Here, we integrate land-use models with landscape fragmentation and connectivity analyses, to assess the effects of past and future land-use changes on the connectivity of protected area networks for a highly dynamic region in southeast Spain. Our results show a continued geographical polarisation of land use, with agricultural intensification and urban development in the coastal areas, and the abandonment of traditional land use in the mountains (e.g., 1100 km2 of natural vegetation are projected to be lost in coastal areas whereas 32 km2 of natural vegetation would recover in interior areas from 1991 to 2015). As a result, coastal protected areas will experience increasing isolation. The connectivity analyses reveal that the two protected area networks in place in the study area, the European “Natura 2000” and the Andalusian “RENPA” networks, include many landscape connectors. However, we identify two areas that currently lack protection but contain several important patches for maintaining the region's habitat connectivity: the northwestern and the southwestern slopes of the Sierra Cabrera and Bédar protected area. Our results highlight the importance of considering future land-use trajectories in conservation planning to maintain connectivity at the regional scale, and to improve the resilience of conservation networks.  相似文献   

18.
Jianguo Wu 《生物多样性》2008,16(3):205-213
Biodiversity is the basis for ecosystem goods and services that provide for human survival and prosperity. With a rapidly increasing human population and its demands for natural resources, landscapes are being fragmented, habitats are being destroyed, and biodiversity is declining. How can biodiversity be effectively conserved in the face of increasing human pressures? In this paper, Ⅰ review changing perspectives on biodiversity conservation, and discuss their relevance to the practice of biodiversity conservation. The major points include The notion of balance of nature is a myth rather than a scientific concept; the theory of island biogeography is useful heuristically but flawed practically; the SLOSS debate is intriguing in theory but irrelevant in reality; the concept of minimum viable population and population viability analysis are useful, but technically inefficient and conceptually inadequate; metapopulation theory is mathematically elegant but ecologically oversimplistic; and integrative perspectives and approaches for biodiversity conservation are needed that incorporate insights from landscape ecology and sustainability science. Ⅰ further discuss some key principles for regional conservation planning, and argue that the long-term success of biodiversity conservation in any region will ultimately depend on the economic and social sustainability of that region. Both research and practice in biodiversity conservation, therefore, need to adopt a broader perspective of sustainability.  相似文献   

19.
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. "Backyard biodiversity", defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of "backyard biodiversity" specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability.  相似文献   

20.
Only few studies have analysed the relationship between biodiversity and ecosystem function at the landscape scale although relationships and mechanisms known from experimental studies might be different in natural systems. We quantified bird diversity and seed removal from 38 wild cherry trees (Prunus avium) along a human land-use gradient from forest to structurally diverse to simple agricultural systems. High human land-use intensity led to low species richness and total abundance of the local bird community around wild cherry trees, as expected from previous studies. Nevertheless, trees in structurally simple agroecosystems were visited as frequently as trees in structurally complex landscapes and in forests. Furthermore, the number of seeds removed per tree did not decline with increasing human land-use intensity. Thus, ecosystem function was robust in spite of locally reduced bird diversity. The reason might be that movement behaviour and movement distances of birds changed along the human land-use gradient. It appears that birds moved longer distances to forage in fruiting cherry trees in structurally simple agroecosystems. This suggests that for systems where ecosystem function is mediated by highly mobile organisms, movement behaviour and distances are of considerable importance. Increases in movement distances with increasing human land-use intensity might also be common in other systems in which ecosystem function depends on mobile links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号