首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular physiology of taste transduction   总被引:22,自引:0,他引:22  
Taste receptor cells use a variety of mechanisms to transduce chemical information into cellular signals. Seven-transmembrane-helix receptors initiate signaling cascades by coupling to G proteins, effector enzymes, second messengers and ion channels. Apical ion channels pass ions, leading to depolarizing and/or hyperpolarizing responses. New insights into the mechanisms of taste sensation have been gained from molecular cloning of the transduction elements, biochemical elucidation of the transduction pathways, and electrophysiological analysis of the function of taste cell ion channels.  相似文献   

2.
The sense of taste plays a critical role in the life and nutritional status of organisms. During the last decade, several molecules involved in taste detection and transduction have been identified, providing a better understanding of the molecular physiology of taste receptor cells. However, a comprehensive catalogue of the taste receptor cell signaling machinery is still unavailable. We have recently described the occurrence of calcium signaling mechanisms in taste receptor cells via apparent store-operated channels and identified Trpm5, a novel candidate taste transduction element belonging to the mammalian family of transient receptor potential channels. Trpm5 is expressed in a tissue-restricted manner, with high levels in gustatory tissue. In taste cells, Trpm5 is co-expressed with taste-signaling molecules such as alpha-gustducin, Ggamma(13), phospholipase C beta(2) and inositol 1,4,5-trisphosphate receptor type III. Biophysical studies of Trpm5 heterologously expressed in Xenopus oocytes and mammalian CHO-K1 cells indicate that it functions as a store-operated channel that mediates capacitative calcium entry. The role of store-operated channels and Trpm5 in capacitative calcium entry in taste receptor cells in response to bitter compounds is discussed.  相似文献   

3.
Recent studies have shown that taste sensations are mediatedby a multiplicity of transduction mechanisms. The taste of saltis produced in part by the entry of Na+ through channels inthe apical taste cell membrane. Na+ transport also mediatessweet perception in some species. The taste of KCI requiresentry of K+ through apical potassium channels. The productionof second messengers such as cAMP by taste stimuli or tastemodifiers can depolarize taste cells by inducing an enzymaticcascade that alters K+ permeability.  相似文献   

4.
Taste receptors cells are responsible for detecting a wide variety of chemical stimuli. Several molecules including both G protein coupled receptors and ion channels have been shown to be involved in the detection and transduction of tastants. We report on the expression of two members of the transient receptor potential (TRP) family of ion channels, PKD1L3 and PKD2L1, in taste receptor cells. Both of these channels belong to the larger polycystic kidney disease (PKD or TRPP) subfamily of TRP channels, members of which have been demonstrated to be non-selective cation channels and permeable to both Na(+) and Ca(2+). Pkd1l3 and Pkd2l1 are co-expressed in a select subset of taste receptor cells and therefore may, like other PKD channels, function as a heteromer. We found the taste receptor cells expressing Pkd1l3 and Pkd2l1 to be distinct from those that express components of sweet, bitter and umami signal transduction pathways. These results provide the first evidence for a role of TRPP channels in taste receptor cell function.  相似文献   

5.
It is conventionally accepted that sour transduction does not require a receptor mechanism and is based on a direct interaction of acid stimuli with apical ion channels. At the same time, it has been shown that a number of neuronal cells express H(+)-gated cation channels. We studied the effect of acid stimuli on ion currents recorded from frog Rana temporaria taste receptor cells and found that a substantial subpopulation of them exhibited K+ currents activated by extracellular protons. To our knowledge, this is the first demonstration of H(+)-gated K+ channels in cells of any type including taste receptor cells. These channels are presumably involved in sour transduction and/or contribute to intercellular communications between discoid cells.  相似文献   

6.
A gap junction blocker, 18β-glycyrrhetinic acid (β-GA), increased the membrane resistance of Ia, Ib and II/III cells of frog taste disk by 50, 160, and 300 MΩ, respectively, by blocking the gap junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk cells for 4 basic taste stimuli were reduced to 40–60% after intravenous injection of β-GA at 1.0 mg/kg. β-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic taste stimuli and varying numbers of 4 taste qualities did not differ between control and β-GA-treated taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were very similar in control and β-GA-treated taste disk cells. It is concluded that β-GA at 1.0 mg/kg reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking depolarizing currents flowing through the gap junction channels and hemichannels, but probably weakly affected the gustatory transduction mechanisms for 4 taste stimuli.  相似文献   

7.
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that released ATP in a manner that was Ca(2+) independent but voltage-dependent. Data from physiological and pharmacological experiments suggested that ATP was released from taste cells via specific channels, likely to be connexin or pannexin hemichannels. A small fraction of ATP-secreting taste cells responded to bitter compounds, indicating that they express taste receptors, their G-protein-coupled and downstream transduction elements. Single cell RT-PCR revealed that ATP-secreting taste cells expressed gustducin, TRPM5, PLCbeta2, multiple connexins and pannexin 1. Altogether, our data indicate that tastant-responsive taste cells release the neurotransmitter ATP via a non-exocytotic mechanism dependent upon the generation of an action potential.  相似文献   

8.
Delayed rectifying K+ (DRK) channels in taste cells have been implicated in the regulation of cell excitability and as potential targets for direct and indirect modulation by taste stimuli. In the present study, we have used patch-clamp recording to determine the biophysical properties and pharmacological sensitivity of DRK channels in isolated rat fungiform taste buds. Molecular biological assays at the taste bud and single-cell levels are consistent with the interpretation that taste cells express a variety of DRK channels, including members from each of the three major subfamilies: KCNA, KCNB, and KCNC. Real-time PCR assays were used to quantify expression of the nine DRK channel subtypes. While taste cells express a number of DRK channels, the electrophysiological and molecular biological assays indicate that the Shaker Kv1.5 channel (KCNA5) is the major functional DRK channel expressed in the anterior rat tongue. transduction  相似文献   

9.
Neuronal, muscle and some endocrine cells are electrically excitable. While in muscle and endocrine cells AP stimulates and synchronizes intracellular processes, neurons employ action potentials (APs) to govern discontinuous synapses located distantly. Meanwhile, such axonless sensory cells as photoreceptors and hair cells exemplify afferent output, which is not driven by APs; instead, gradual receptor potentials elicited by sensory stimuli control the release of afferent neurotransmitter glutamate. Mammalian taste cells of the type II and type III are electrically excitable and respond to stimulation by firing APs. Since taste cells also have no axons, physiological significance of the electrical excitability for taste transduction and encoding sensory information is unclear. Perhaps, AP facilitates transmitter release, ATP in type II cells and 5-HT in type III cells, although via different mechanisms. The ATP release is mediated by connexin hemichannels, does not require a Ca2+ trigger, and largely gated by membrane voltage. 5-HT secretion is driven by intracellular Ca2+ and involves VG Ca2+ channels. Here, we discuss ionic mechanisms of excitability of taste cells and speculate on a likely role of APs in mediating their afferent output.  相似文献   

10.
TRPs in our senses   总被引:1,自引:0,他引:1  
In the last decade, studies of transient receptor potential (TRP) channels, a superfamily of cation-conducting membrane proteins, have significantly extended our knowledge about the molecular basis of sensory perception in animals. Due to their distinct activation mechanisms and biophysical properties, TRP channels are highly suited to function in receptor cells, either as receptors for environmental or endogenous stimuli or as molecular players in signal transduction cascades downstream of metabotropic receptors. As such, TRP channels play a crucial role in many mammalian senses, including touch, taste and smell. Starting with a brief survey of sensory TRP channels in invertebrate model systems, this review covers the current state of research on TRP channel function in the classical mammalian senses and summarizes how modulation of TRP channels can tune our sensations.  相似文献   

11.
Nitric oxide (NO) is generated by some types of cells as a membrane-permeant, short-acting paracrine signal. Its effects include activation of ion channels as well as formation of cGMP in the NO-generating and/or neighbouring cells. We have explored the possible involvement of NO in taste transduction by searching for NO synthase with histochemical and immunohistochemical methods. In taste buds of the rat vallate and foliate papilla, we found NADPH-diaphorase activity under stringent conditions that suppress the reactions of non-NO synthase enzymes. Furthermore, an antibody against neuronal NO synthase (NOS-I) labelled the basal and apical parts of taste cells, while an antibody against endothelial NO synthase (NOS-III) labelled taste buds and lingual epithelium more uniformly. The inducible macrophage enzyme NOS-II did not show immunoreactivity in taste buds. The results provide a first suggestion that NO may play a role in taste transduction. © 1998 Chapman & Hall  相似文献   

12.
The pharmacology and signaling of bitter, sweet, and umami taste sensing   总被引:1,自引:0,他引:1  
Over the last decade, many of the molecular components that mediate the transduction of taste signaling have been elucidated. The chemosensory receptors for taste have been identified as G protein-coupled receptors (GPCRs) and ion channels that are expressed on the surface of highly specialized taste sensory cells. Tastant molecules act as agonists, binding to and stabilizing active conformations of receptors, resulting in the initiation of signal transduction cascades. Taste signaling, therefore, should be amenable to the methods of pharmacology. This review focuses on the GPCR-mediated signaling of bitter, sweet, and umami tastes and emphasizes the opportunities for pharmacologic evaluation.  相似文献   

13.
Nagai T  Nii D  Takeuchi H 《Chemical senses》2001,26(8):965-969
Studies in the last two decades have shown that amiloride-sensitive Na(+) channels play a role in NaCl transduction in rat taste receptors. However, this role is not readily generalized for salt taste transduction in vertebrates, because functional expression of these channels varies across species and also in development in a species. Glossopharyngeal nerve responses to sodium and potassium salts were recorded in larval and metamorphosed salamanders and compared before and after the oral floor was exposed to amiloride, a blocker of Na(+) channels known to be responsible for epithelial ion transport. Pre-exposure to amiloride (100 microM) did not affect salt taste responses in both axolotls (Ambystoma mexicanum) and larval Ezo salamanders (Hynobius retardatus). In contrast, in metamorphosed Ezo salamanders the nerve responses to NaCl were significantly reduced by amiloride. In amphibians amiloride-sensitive components in salt taste transduction seem to develop during metamorphosis.  相似文献   

14.
Taste cells respond to a wide variety of chemical stimuli: certain ions are perceived as salty (Na+) or sour (H+); other small molecules are perceived as sweet (sugars) and bitter (alkaloids). Taste has evolutionary value allowing animals to respond positively (to sweet carhohydrates and salty NaCl) or aversively (to bitter poisons and corrosive acids). Recently, some of the proteins involved in taste transduction have been cloned. Several different G proteins have been identified and cloned from taste tissue: gustducin is a taste cell specific G protein closely related to the transducins. Work is under way to clone additional components of the taste transduction pathways. The combination of electrophysiology, biochemistry and molecular biology is being used to characterize taste receptor cells and their sensory transduction mechanisms.  相似文献   

15.
Umami taste is elicited by monosodium glutamate (MSG), a compound consisting of two potent taste stimuli, Na(+) and glutamate. In rat fungiform taste cells, amiloride-sensitive epithelial sodium channels (ENaCs) mediate Na(+) transduction, while glutamate is transduced by a combination of ionotropic and metabotropic glutamate receptors. We used giga-seal whole-cell recording to determine if responses to glutamate and Na(+) occur in the same taste cells. Approximately 68% of the cells tested responded to amiloride, indicating that they express functional ENaCs. Responses to glutamate occurred in about 58% of the cells tested. Interestingly, responses to glutamate occurred in the subset of cells that also responded to amiloride, indicating that glutamate receptors are located preferentially in the same taste cells that also express ENaCs. Further experiments showed that amiloride did not suppress responses to glutamate under voltage-clamp conditions. Taken together, the data suggest that although ENaCs are not involved directly in glutamate transduction, their co-localization with glutamate receptors provides a substrate for the cellular integration of these independent pathways. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

16.
The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.  相似文献   

17.
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na+, H+) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na+, that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction.  相似文献   

18.
All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.  相似文献   

19.
Summary The gustatory sensory system provides animals with a rapid chemical analysis of a potential food substance providing information necessary to facilitate ingestion or rejection of the food. The process of gustatory transduction is initiated in the taste cells in the lingual epithelium. However, due to the small size, scarcity of the cells and their location, embedded in a keratinized squamous epithelium, it has been difficult to study the primary events in the transduction process. Recently, we have developed a preparation of dissociated rat taste cells that permits studies of the taste transduction process in single isolated cells. We have now investigated the electrophysiological properties of the rat taste cells using the patch-clamp technique. We have identified two populations of cells within the taste bud: one expressing a voltage-dependent potassium current and the second containing both voltage-dependent sodium and potassium currents. The potassium current in both cell groups is blocked by external TEA, Ba2+, and quinine. Two types of K+ channels have been identified: a 90-pS delayed rectifier K+ channel and a maxi calcium-activated K+ channel. The sodium current is blocked by TTX, but not by amiloride.  相似文献   

20.
Although several pathways of bitter taste signal transduction have been proposed in taste cells, these mechanisms have not been elucidated in detail. To investigate the diversity of responses to bitter stimuli, we recorded the electrophysiological responses to quinine, denatonium and naringin using whole-cell patch clamp technique in isolated taste cells of C57BL/6J mice. Ten mM quinine induced depolarizing response under the current clamp mode, and inward current response under the voltage-clamp mode (holding potential -80 mV) using both K+ (with pseudo intracellular solution) and Cs+ (K+ was substituted by Cs+ in the pseudo intracellular solution) pipettes. However, when the K+ pipette was used, the membrane conductance was suppressed and activated in succession. On the other hand, the membrane conductance was only activated when the Cs+ pipette was used. Half to one mM denatonium induced depolarizing response under the current clamp mode, and outward current response under the voltage clamp mode with both pipettes. Using these pipettes, the membrane conductance was activated or suppressed in the individual case. Naringin-induced responses were not detected in these measurements. These electrophysiological recordings suggest that multiple transduction mechanisms are involved in bitter taste perception in mouse taste cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号