首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relative water content (RWC) and water potential as measuredwith the pressure chamber were evaluated as indicators of waterstatus of tissue-cultured apple shoots and plantlets (shootswith roots). During the hydration required for RWC measurement,both water content and water potential exhibited the same hydrationkinetics, indicating that 10 h were required for full hydration.Once full hydration was reached, shoot mass remained relativelyconstant. Moisture release characteristics were also constructedand the associated shoot and plantlet water relations parameterswere estimated. Underin vitroconditions, both shoot and plantletwater potential were similar to the water potential of the culturemedium in which they were grown. The moisture release characteristicof shoots and plantlets was consistent with that expected fortypical plant tissues, and gave estimates of maximum modulusof elasticity (6.201.14 MPa), osmotic potential at saturation(–0.85 0.10 MPa), osmotic potential at zero turgor (–1.16 0.14 MPa) and RWC at zero turgor (78 2%) which were similarto values in the literature. Higher values of leaf conductanceand RWC were found in shoots and plantlets placed at 95% RH(21 C) compared to those at 90% RH. Plantlets had higher valuesof both conductance and RWC compared to shoots, suggesting thatinvitroroots are functional in water uptake. Relative water contentwas related to measures of physiological activity such as leafconductance, and it was also easier to measure than water potential.Relative water content is suggested as a sound index of waterstatus in tissue culture plants. Key words: Conductance, microculture, water status, water stress.  相似文献   

2.
Research has shown that when plant roots are exposed to a dryingsoil a non-hydraulic (chemical) signal is produced in the rootand transported to the shoot, causing stomatal closure and growthretardation. This study was designed to reveal genetic diversityin wheat response to soil conditions which elicit a root signal,as the first step in the investigation of the genetic controlof the production of and the response to the root signal. Five spring wheat (Triticum aestivum L.) cultivars were establishedin the growth chamber in soil-filled polyvinyl chloride tubes,120 cm long and of an internal diameter of 10·2 cm. Soilwas well fertilized and wet to field capacity at emergence whentwo treatments were imposed: (1) tubes were watered from thetop as needed to eliminate stress (control); and (2) tubes hada constant water table at a soil depth of 100 to 120 cm, withno applied water. Measurements were performed on five dateson leaf water status and stomatal diffusive resistance. Above-groundbiomass and grain yield per plant were determined at maturity. The water table treatment resulted in dry and hard top soilconditions which were previously indicated to elicit a possibleroot signal. Under these experimental conditions, cultivarsdiffered in their leaf water status, stomatal diffusive resistance(Rs) and plant production. In the control treatment, Rs of cultivarsincreased with reductions in their relative water content (RWC)and leaf water potential (LWP), indicating the expected controlof Rs by leaf water status. Under conditions of a drying topsoil, relative water content (RWC) and leaf water potential(LWP) increased in cultivars that had a higher Rs, indicatingthat stomatal activity was controlling leaf water status. Itwas therefore suggested that the drying top soil elicited aroot signal which caused stomatal closure and reduced plantproduction. Under such conditions, two cultivars (Bethlehemand V748) consistently maintained relatively low Rs and highplant production, despite their relatively lower RWC and LWP,as compared with cvs C97, V747 and V652. Limited observationssuggest that in these two cultivars relatively fewer roots mayhave been exposed to the drying top soil, as compared with theother three cultivars. Key words: Triticum aestivum, cultivars, soil moistrue, drought stress, root, root signal, stomata, relative water content, leaf water potential, biomass, yield  相似文献   

3.
Shoot Resistance to Water Flow in Cotton   总被引:2,自引:0,他引:2  
Studies using excised cotton (Gossypium hirsutum L.) plants,attached to a free water source and undergoing transpirationcycles, were conducted at intervals over a 2 year period inorder to quantify shoot resistance components of cotton canopies.Leaf water potential was found to be a linear function of transpirationrate at rates above 0.1 mm h–1, so shoot resistance wasevaluated as the slope of this function. The value of 4.8 104h (0.48 MPa h mm–1) total shoot resistance was consistentfor 1.10 m tall, well irrigated, fruit-bearing cotton plants.Further tests, with pre-wrapped and exposed leaves, revealedthat total shoot resistance was comprised of an axial component(40%) and a leaf component (60%). The total shoot resistanceof 0.48 MPa h mm–1 is likely to be relevant for modellingcotton water relations when LWP is evaluated on exposed, topof the canopy leaves, such as in the ‘big leaf’type models. Key words: Leaf water potential, axial resistance, leaf resistance  相似文献   

4.
Improvements of thermocouple hygrometric techniques for in situleaf water potential measurement in the field now allows forcontinuous monitoring of water potential in response to an externalperturbation, such as leaf excision. Using Citrus jambhiri plants,measured leaf water potentials of completely excised leaf portionsimmediately increased when the petiole was excised or incisionswere made either transverse or parallel to the midrib. Incisionsparallel to the midrib were on the side nearest the hygrometeror opposite it if preceded by a petiole excision. Midrib incisionswere 100–150 mm long with the nearest cut edge being 20–50mm from the hygrometer cavity. All excisions were such thatleaf tissue was removed from the leaf with water potential onone of the leaf portions being measured continuously prior toand after excising. The peak increase in measured water potentialof the excised leaf portions ranged between 20 kPa and 80 kPabut averaged 50 kPa. In uncovered leaves, particularly underfield conditions with the associated high evaporative demand,measured leaf water potential declined rapidly after the initialincrease. The increase in measured water potential immediatelyfollowing various types of excision was confirmed for dark andlight conditions (laboratory and field respectively) using bothpsychrometric and dewpoint modes and occurred for secondaryexcisions, but to a lesser extent. Discovery of this phenomenonimplies that water potential measured on detached leaves maynot always represent accurately in situ leaf water potential. Key words: Leaf water potential, Thermocouple hygrometers, Leaf excision effects  相似文献   

5.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

6.
Rozema, J., Arp, W., van Diggelen, J., Kok, E. and Letschert,J. 1987. An ecophysiological comparison of measurements of thediurnal rhythm of the leaf elongation and changes of the leafthickness of salt-resistant Dicotyledonae and Monocotyledonae.—J.exp. Bot. 38: 442–453. The continuous measurement of leaf elongation and leaf thicknesswith the use of a rotation potentiometer set up revealed a rapidand sensitive reaction of halophytic plants to conditions affectingthe plant's water relations. At increased salinity (450 molm–3 NaCl) the rate of leaf elongation decreased both inAster tripolium and in Sparlina anghca. Increased shrinkageduring the day and a long period for recovery swelling at nightin leaves of Aster iripolium at increased salinity illustratesthat water shortage is part of the cause of salinity-inducedgrowth reduction. All dicotyledonous species analysed (Aster tripolium, A triplexhastata, A. littoralis, Suaeda maritima and Beta vulgaris) showeda day/night ratio of the leaf elongation rate lower than 1,while this ratio was higher than or equal to 1 in Monocotyledons(Spartina anglica, Juncus gerardii, J. maritimus, Festuca rubrassp. litoralis, Elymus pycnanthus). With the exception of Triglochinmaritima none of the monocotyledonous halophytes tested (Sparlinaanglica, Juncus gerardii, J. maritimus, Festuca rubra ssp. litoralis,Elymus pycnanthus) exhibited a diurnal rhythm of leaf thicknesschanges, such as was observed for all dicotyledonous speciesstudied (Aster tripolium, Atriplex hastata, A. littoralis, Salicorniabrachyslachya, Suaeda maritima, Glaux maritima, Odontites vernassp. serotina). The diurnal pattern of the leaf elongation rateand the leaf thickness changes can be explained by variationof photosynthetic rate and transpiration water losses by stomatalclosure in the dark and opening in the light such as shown forthe dicotyledon species Glaux maritima. This difference betweendicot and monocot species in diurnal variation of the leaf elongationrate and leaf thickness may partly be explained in terms ofthe different position of the growth zone and possibly by adifference in elasticity of the tissue of halophytic monocotyledonsand dicotyledons. The consequences of these differences arediscussed. Key words: Leaf elongation rate, leaf thickness, water relations, salt resistance, Dicotyledonae, Monocotyledonae  相似文献   

7.
Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlledconditions under three different irradiances of visible lightwith or without UV-B (280–320nm) radiation. The biologicallyeffective UV-B radiation (UV-BBE) was 6.17 kJ m–2 d–1,and simulated a c. 5% decrease in stratospheric ozone at 55.7?N,13.4?E. The photon flux densities of the photosyntheticallyactive radiation (PAR, 400–700 nm) were either 700 µmolm–2–1 (HL), 500, µmol m–2 s–1(ML) or 230 µmol m–2 s–1 PAR (LL). Under highlight (HL) conditions plus UV-B radiation, bean plants appearedmost resistant to the enhanced levels of UV-B radiation, andresponded only by increasing leaf thickness by c. 18%. A smallincrease in UV screening pigments was also observed. Both thelower irradiances (ML and LL) increased the sensitivity of theplants to UV-B radiation. Changes in leaf structure were alsoobserved. Photosystem II was inhibited under ML and LL togetherwith UV-B radiation, as determined by Chi fluorescence inductionand calculation of the fluorescence half-rise times. Leaf reflectivitymeasurements showed that the amount of PAR able to penetrateleaves of UV-B treated plants was reduced, and that a possiblecorrelation may exist between the reduced PAR levels, loss ofChi and lowered photosynthetic activity, especially for LL +UV-Bgrown plants, where surface reflection from leaves was highest.Changes in leaf chlorophyll content were mostly confined toplants grown under LL + UV-B, where a decrease of c. 20% wasfound. With regard to protective pigments (the carotenoids andUV screening pigments) plants subjected to different visiblelight conditions responded differently. Among the growth parametersmeasured, there was a substantial decrease in leaf area, particularlyunder LL + UV-B (c. 47% relative to controls), where leaf dryweight was also reduced by c. 25%. Key words: Chlorophyll fluorescence induction, bean, flavonoids, Phaseolus vulgaris, reflectance, UV-B radiation  相似文献   

8.
Flooding the soil for 5–7 d caused partial desiccationin leaves of pea plants (Pisum sativum. L. cv. ‘Sprite’).The injury was associated with anaerobiosis in the soil, a largeincrease in the permeability of leaf tissue to electrolytesand other substances, a low leaf water content and an increasedwater saturation deficit (WSD). Desiccating leaves also lackedthe capacity to rehydrate in humid atmospheres, a disabilityexpressed as a water resaturation deficit (WRSD). This irreversibleinjury was preceded during the first 4–5 d of floodingby closure of stomata within 24 h, decreased transpiration,an unusually large leaf water content and small WSD. Leaf waterpotentials were higher than those in well-drained controls.Also, there was no appreciable WRSD. Leaflets detached fromflooded plants during this early phase retained their watermore effectively than those from controls when left exposedto the atmosphere for 5 min. Stomatal closure and the associated increase in leaf hydrationcould be simulated by excising leaves and incubating them withtheir petioles in open vials of water. Thus, such changes inflooded plants possibly represented a response to a deficiencyin the supply of substances that would usually be transportedfrom roots to leaves in healthy plants (negative message). Ionleakage and the associated loss of leaf hydration that occurswhen flooding is extended for more than 5 d could not be simulatedby isolating the leaves from the roots. Appearance of this symptomdepended on leaves remaining attached to flooded root systems,implying that the damage is caused by injurious substances passingupwards (positive message). Both ethylene and ethanol have beeneliminated as likely causes, but flooding increased phosphorusin the leaves to concentrations that may be toxic. Key words: Pisum sativum, Flooding, Foliar desiccation, Stomata, Ethylene  相似文献   

9.
A leaf disc method for measuring cuticular conductance   总被引:3,自引:3,他引:0  
This paper describes a new method for the measurement of cuticularconductance (go;) using a leaf disc sealed in a specially-designedenvelope. Conductances for astomatous (adaxial) and stomatous(abaxial) surfaces of beech {Fagus sylvatica L.) were determinedfrom measurements of water flux. Leaf discs were punched outfrom attached leaves and placed inside individual envelopesthat provided a water supply. Water flux from an exposed epidermalsurface of the leaf discs was measured gravimetrically. Allmeasurements were made under darkness. Conductance of the adaxialsurface was referred to as gc, whereas conductance of the abaxialsurface was considered as a minimum leaf surface conductance()- The main advantage of this method is that it enables measurement of gc and from leaf samples with intact cuticles and a highrelative water content [RWC) for periods of up to 12 d. Conductancesof leaf discs in envelopes were compared with those of wholeleaves and leaf discs without envelopes. Data demonstratinga strong positive relationship between conductance and RWC ispresented. Key words: Cuticular conductance, leaf disc, relative water content  相似文献   

10.
Internal water balance of barley under soil moisture stress   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments.

Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied.

The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions.

  相似文献   

11.
The water relations of five species of tropical vascular epiphytesnative to Malaysia were studied. The species were ferns: Pyrrosiaadnascens (Forst.) Ching. and Pyrrosia angustata (Sw.) Ching.;orchids: Eria velutina Lindl., Dendrobium tortile Lindl. andDendrobium crumenatum Sw. Leaf resistance as a function of leafwater potential was measured for the two ferns. The criticalwater potential at which stomata closed was found to be highin each case; –0.75 MPa and –0.5 MPa respectively.The components of water potential were estimated with the pressurechamber as functions of relative water content. For each speciescell sap was found to be dilute, pressure potential low at fullturgor, and the change in relative water content between fullturgor and wilting point small. Small values of solute potentialat full turgor were also found for the ferns and E. velutinausing a vapour pressure osmometer. Values of the bulk modulusof elasticity of the leaf tissue for each species lay withinthe range of published data. The significance of these resultsfor the epiphytic way of life is discussed. Key words: Water potential, Epiphytes, Diffusive resistance, Orchid, Fern  相似文献   

12.
We report measurements of diurnal changes in leaf relative watercontent (RWC), water potential (  相似文献   

13.
Parker, W. C. and Pallardy, S. G. 1987. The influence of resaturationmethod and tissue type on pressure-volume analysis of Quercusalba L. seedlings.—J. exp. Bot. 38: 535–549. The effect of resaturation method and amount of woody tissueon pressure-volume analysis was investigated using materialcollected from Quercus alba L. seedlings. Leaves excised fromwell-irrigated, intact plants had lower initial xylem pressurepotentials than did leaves resaturated by two artificial methods.Differential capacity for tissue rehydration among the threemethods was linked to shifts in the relative position of pressure-volumecurves, and differences in the osmotic potential and relativewater content at which turgor loss occurred were observed. Pressure-volumecurves from leaves resaturated by all three methods contained‘plateaus’ near full turgor, where xylem pressurepotential declined only slightly with relative water content.These plateaus were apparently associated with apoplastic waterthat accumulated in intercellular spaces of the leaf near fullturgidity, and acted to buffer changes in leaf xylem pressurepotential as tissues dehydrated. The presence of this waterhas implications for derived water relations parameter estimates.Pressure-volume curves for excised shoots also exhibited plateaus,but the relationship between xylem pressure potential and relativewater content over this region was steeper than was found forleaves. Shoot osmotic potentials were somewhat lower than thosefor leaves. The slope of the linear portion of shoot pressure-volumecurves was more shallow than for single leaves, a response associatedwith comparatively lower values of the symplastic water fractionin shoots. Key words: Pressure-volume curve, tissue-water relations, elasticity  相似文献   

14.
Arbuscular mycorrhizal symbiosis has previously been shown toalter the response of sorghum leaves to probable non-hydraulicsignals of soil drying. Our objectives here were to determine:(1) how changes in phosphorus nutrition affect this root-to-shootsignalling in sorghum, (2) if mycorrhizal symbiosis can affectthe signalling process independently of effects on host P nutrition,and (3) how two Glomus species compare in their influence onsignalling. Sorghum bicolor (L.) Moench ‘G1990A’ plants weregrown with root systems split between two pots. The 332 experimentaldesign included three levels of mycorrhizae (Glomus intraradicesSchenck & Smith, Glomus etunicatum Becker & Gerd., non-mycorrhizal),three levels of phosphorus fertilization and two levels of water(fully watered, half-dried). Declines in leaf elongation with soil drying were more consistentin non-mycorrhizal than mycorrhizal plants. Relative growthrate (RGR) of both mycorrhizal and non-mycorrhizal plants initiallydeclined when water was withheld from about half of the rootsystem. With further soil drying, RGR of mycorrhizal plantseventually returned to control levels, while RGR of non-mycorrhizalplants remained depressed throughout the drying episode. Bythe end of the drying episode, mycorrhizal symbiosis had eliminateddrying-induced declines in total plant leaf length. Shoot androot dry weight declines of half-dried plants were not affectedby mycorrhizae. Declines in stomatal conductance with soil dryingwere larger and more frequent in non-mycorrhizal than mycorrhizalplants. Leaf osmotic potential and relative water content remainedsimilar in control and half-dried plants during drying, suggestingthat altered leaf behaviour of half-dried plants was due tosome non-hydraulic factor. The two fungi did not differ substantiallyin their influence on leaf behaviour. The applied phosphorustreatments did not affect either growth or stomatal responseof halfdried plants to the root-to-shoot signal, but lengthdeclines were related to actual leaf phosphorus concentrations.Rate of soil drying did not appear to influence ultimate growthreductions. We conclude that mycorrhizal fungi can modify leaf growth responseto the root-to-shoot signal of soil drying, and that this mycorrhizaleffect can occur independently of mycorrhizal effects on plantsize or phosphorus nutrition. However, plant size and nutrition,which are commonly affected by mycorrhizal symbiosis, can alsomodify the signalling process. Key words: Drought, nutrition, root signal, Sorghum bicolor, vesicular-arbuscular  相似文献   

15.
A system, designed by Snow and Tingey (1985) for ‘subjectingplants to reproducible water stress levels for extended periodsof time’, is considered. Modifications are also outlinedwhich enable water table heights to be maintained without theneed for complex float chambers. Sunflower plants (Helianthus annuus L. cv. Frankasol) were grownusing the system and these were either ‘well-watered’or subjected to water deficits. The temporal development ofwater deficits was closely monitored by regular psychrometricmeasurements of leaf water potential. Diurnal stomatal behaviour,mid-day abaxial stomatal conductance, and photosynthetic assimilationrates were also determined throughout the experiment, with growthanalysis at the end. A reduction in stomatal conductance occurred within 2–4d after the onset of a restriction in water supply. Data fromboth viscous flow and diffusion porometry suggested that stomatalclosure apparently began without a fall in bulk leaf water potential.Leaf water potentials of plants with a restricted supply ofwater did, however, subsequently decline during the early partof the experiment reaching values as low as –0.99±0.07 MPa after 14 d. No further reduction in bulk water potentialwas observed after a further 5 d, suggesting that a steady-statehad been reached. Corresponding values of leaf water potentialfor well-watered plants were about –0.60 ± 0.04MPa. Biomass determinations indicated the potential for quantifyingthe effects of water deficits, of controlled magnitudes, onrates of leaf production and expansion. However, the possibilityof physical limitations of root development—imposed bothby the plant container and also by the imposition of restrictedwater supplies—must be carefully considered when planningexperiments with this system.  相似文献   

16.
TYREE  M. T. 《Annals of botany》1981,47(5):547-559
A relationship has been derived mathematically between the bulkmodulus of elasticity of a leaf, E, measured by the pressurebomb technique, and the individual cellular bulk moduli, e,of the leaf tissue as measured by the pressure probe technique.A number of examples have been worked out that shows that Eunderestimates the mean value of e by less than 10 per centin most circumstances. Within 2 per cent, E equals the ‘mean’value of e weighted according to the water content change ofeach cell expressed as a fraction of the water content changeof the whole leaf when the water potential. , changes by a smallamount. An analysis of the sources of error involved in theevaluation of E by the pressure bomb technique reveals thatE can be calculated within an error of 10 per cent from valuesof and water loss, We; this error is about the same as theerror in e measured on individual cells by the pressure probetechnique. bulk elastic modulus, water potential isotherms, pressure bomb, pressure probe  相似文献   

17.
This study explores the mechanisms of osmotic adjustment bycomparing the growth of spring wheat and sudangrass, which exhibitdifferent degrees of osmotic adjustment, under soil water andtemperature stresses. Leaf water potential ( 1), osmotic potential(), and rate of leaf area growth of spring wheat and sudangrassseedlings were measured at combinations of five soil water potentials,from -0·03 to -0·25 MPa, and six root temperatures,from 14 to 36°C. Spring wheat exhibit little osmotic adjustment.The leaf osmotic potential was not affected by either soil wateror root temperature stress. Osmotic potential of sudangrassdecreased in parallel with the decreasing leaf water potentialas a result of osmotic adjustment. As soil water potential decreasedfrom -0·03 to -0·25 MPa, the rates of growth andphotosynthesis of spring wheat both decreased by about 30%.For sudangrass with the same range of soil water potential,the photosynthesis rate decreased by only 10% while the leafarea growth rate decreased by 49%. We introduce a dimensionlessindex (R) to quantify the degree to which environmental stressesalter the balance between production of photosynthates and theiruse for growth. The index, R, is equal to 1 when stress reducesgrowth and photosynthesis by the same degree, i.e. the balancebetween production and consumption of photosynthate is not disturbed.R is smaller than 1 when growth is reduced more than photosynthesis.R was equal to 1 for spring wheat where there was no osmoticadjustment. For sudangrass, R decreased from 1 to 0·25as osmotic potential decreased from -1·10 to -1·63MPa. These findings lead to the hypothesis that osmotic adjustmentcould result from an imbalance between production, consumptionand translocation of photosynthates under stressed conditions.Copyright1993, 1999 Academic Press Osmotic adjustment, water stress, root temperature  相似文献   

18.
KARAMANOS  A. J. 《Annals of botany》1978,42(6):1393-1402
The leaf area growth of field beans grown under covers in thefield was measured non-destructively on plants subjected tothree different degrees of soil water stress by means of dryingcycles of different lengths in 1974 and 1975. After a periodof 46 days the total leaf area of the well-watered plants wasabout double that of the non-watered ones. The total leaf areaat the final-sampling and the mean plant water potential duringthe observation period were linearly related with highly significantcorrelation coefficients (0·96 in 1974 and 0·86in 1975). The differences between treatments in total leaf areawere mainly produced by the mechanisms determining leaf sizerather than those associated with leaf production and maintenance,namely leaf production, unfolding and death. In neither yearwas leaf production or unfolding sensitive to water stress beforeflowering. Plant water potential () exerted a cumulative longterm effect on these two mechanisms. The threshold values of for reducing the rates of leaf production and unfolding weremore negative in the drier year (1975). Leaf death was affectedby drought earlier than leaf production and unfolding. Vicia faba, field bean, water stress, leaf area  相似文献   

19.
Cuticular resistance to water vapour diffusion between the substomatalcavity and the sensing psychrometer junction is a problem uniqueto leaf hygrometry. This resistance is not encountered in soilor solution hygrometry. The cuticular resistance may introduceerror in the measurement of leaf water potential. Using in situleaf hygrometers, we studied the effect of abrading the cuticleof Citrus jambhiri Lushington leaves, to reduce the diffusiveresistance. Field measurements of psychrometer water potentialwere compared with Scholander pressure chamber values for adjacentleaves. Different treatments were compared by sealing pairsof psychrometers on either side of the midrib. The time forwater vapour equilibration between the leaf and the psychrometerchamber was greater than 5 h for no abrasion. For abraded leaves,the true water potential value was obtained within an hour.After equilibration, psychrometer values compared favourablywith pressure chamber values for adjacent leaves (r > 0.97).Measured water potential for unabraded leaves did not correlatewell with corresponding pressure chamber measurements. Scanning electron micrographs indicated that the damage causedby abrading leaves for 60 s using carborundum powder (60 µmdiameter) was surface localized, with numerous scratchings ofthe leaf cuticle. The coarse abrasion treatment (aluminium oxide,75 µm diameter) resulted in fewer but larger cavitiesin the epidermis, which may explain the observed variabilityin the corresponding psychrometric measurements. Key words: Leaf water potential, Cuticular resistance, Leaf abrasion, Thermocouple psychrometer  相似文献   

20.
The components of leaf water potential (l) and relative watercontent (RWC) were measured for stands of bambara groundnut(Vigna subterranea) exposed to three soil moisture regimes incontrolled-environment glasshouses at the Tropical Crops ResearchUnit, Sutton Bonington Campus. Treatments ranged from fullyirrigated (wet) to no irrigation from 35 days after sowing (DAS)(dry). RWC values varied between 92–96% for the wet treatment,but declined from 93% to 83% in the dry treatment as the seasonprogressed. l at midday decreased in both the wet and dry treatments,but the seasonal decline was more pronounced in the latter:seasonal minimum values were –1.19 and –2.08 MPa,respectively. Plants in the wet treatment maintained turgor(p) at about 0.5 MPa throughout the season, whereas values inthe dry treatment approached zero towards the end of the season.There was a linear relationship between p and l9 with p approachingzero at a l of –2.0 MPa. Mean daily leaf conductance wasconsistently higher in the wet treatment (0.46–0.79 cm-1)than in the intermediate and dry treatments (0.13–0.48cm s-1 Conductances in the intermediate and dry treatments weresimilar, and the lower evapotranspirational water losses inthe latter were attributable to its consistently lower leafarea indices (L): L at final harvest was 3.3, 3.3 and 1.9 forthe wet, intermediate and dry treatments. Bambara groundnutwas apparently able to maintain turgor through a combinationof osmotic adjustment, reductions in leaf area index and effectivestomatal regulation of water loss. Key words: Vigna subterranea, water relations, soil moisture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号