首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of guanyl nucleotides on the catalytic and catecholamine-stimulated activities of adenylate cyclase in developing chick skeletal muscles were studied. GTP and guanylyl imidodiphosphate stimulate the cyclase catalytic activity already at the early embryonic stages without having potentiating influence on the catecholamine-stimulated activity in embryonic muscle. In a distinct and regular form this effect can be observed only after hatching. Therefore during embryogenesis the coupling function of the GTP-binding component of adenylate cyclase system characteristic of its mature state is not manifested. The effects of the nucleotide suggest that they occur as two independent processes.  相似文献   

2.
The physiological regulation of light-activated cyclic GMP phosphodiesterase (EC 3.1.4.17) in rod outer segments has been shown to depend upon a heat-stable inhibitor and upon the reversal of its effect by a specific GTP/GTP-binding protein complex (Hurley, J. B. (1980) Biochem. Biophys. Res. Commun. 92, 505-510; Yamazaki, A., Bartucca, F., Ting, A., and Bitensky, M. W. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3702-3706). Washing of illuminated disc membranes with an isotonic buffer released 86% of the peripheral proteins without any release of inhibitor. Subsequent washing with the same isotonic buffer containing GTP released 80% of the inhibitor. When inhibitor was eluted with guanosine-5'-(beta, gamma-imino)triphosphate, it had an apparent molecular weight of 60,000 on Sephadex G-100. The release of inhibitor by guanosine-5'-(beta, gamma-imino)triphosphate was also demonstrated with sucrose density gradient centrifugation. Inhibitor release from the disc membrane by GTP or its analogue was accompanied by the release of the GTP-binding protein and an increased phosphodiesterase activity in the membrane. However, following GTP hydrolysis, both inhibitor and GTP-binding protein returned to the membrane and phosphodiesterase activity in the membrane decreased proportionally. In contrast, incubation of disc membranes with guanosine-5'-(beta, gamma-imino)-triphosphate produced an increase of inhibitor activity in the supernatant and an increase of phosphodiesterase activity in the pellet which remained constant after the initial increase. These data clearly show that the activation of phosphodiesterase by the GTP/GTP-binding protein complex resulted from the release of inhibitor. Hydrolysis of GTP resulted in the reassociation of inhibitor with and concomitant inhibition of disc membrane phosphodiesterase.  相似文献   

3.
Two trials were conducted to investigate the effect of corticosterone (CORT) on protein metabolism and the amino acid composition in muscle tissues of broiler chickens (Gallus gallus domesticus). In Trial 1, two groups of 30 broiler chickens were subjected to control or CORT treatment (30 mg/kg diet) from 28 to 39 days of age. In Trial 2, three groups of chickens of 28 days of age were randomly subjected to one of the following treatments for 7 days: CORT (30 mg/kg diet), pair-fed (maintaining the same feed intake as CORT treatment) and control treatments. The body mass gain and feed efficiency was significantly decreased by CORT treatment, while the food intake was decreased. The breast and thigh masses (% body mass) were significantly suppressed by CORT treatment, while the abdominal fat and liver masses (%) were obviously increased. The plasma levels of glucose, urate and total amino acid were significantly elevated by CORT treatment. The capacity for protein synthesis, estimated by RNA:protein ratio, were significantly suppressed by CORT in M. pectoralis major and M. biceps femoris. The 3-methylhistidine concentrations were significantly increased in both M. pectoralis major and M. biceps femoris of CORT chickens, compared to control but not the pair-fed chickens. The amino acid composition of M. pectoralis major and M. biceps femoris was not significantly affected by CORT treatment. In conclusion, the arrested growth in skeletal muscles induced by CORT administration has tissue specificity. The CORT treatment retards the growth of skeletal muscle by suppressed protein synthesis and augmented protein catabolism.  相似文献   

4.
Expression of an uncoupling protein gene homolog in chickens   总被引:2,自引:0,他引:2  
An avian uncoupling protein (UCP) gene homolog was recently sequenced from skeletal muscle and was proposed to have a role in thermogenesis in chickens, ducks and hummingbirds. Since mammalian UCP 2 and UCP 3 also appear to have functions associated with energy and substrate partitioning and body weight regulation, the purpose of this study was to further characterize chicken UCP under conditions of nutritional stress and/or leptin administration. Male 3-week-old chickens were starved for 24 or 48 h and then half of each group was refed for an additional 24 h. In a follow-up experiment, chickens were fed or starved for 48 h with or without leptin administration. Feed deprivation increased UCP mRNA expression in skeletal muscle by up to 260% (P<0.001), and in a time-dependent manner in pectoralis muscle. Refeeding for 24 h normalized muscle UCP mRNA levels. Leptin administration had no effect on muscle UCP. Chicken muscle UCP mRNA levels were highly correlated with plasma triglyceride and non-esterified fatty acid (NEFA) concentrations, and with circulating levels of insulin, insulin-like growth factor (IGF)-I and IGF-II. These results suggest that, as in mammals, avian UCP is up-regulated during feed deprivation and is highly correlated with increased fatty acid oxidation and flux into skeletal muscle.  相似文献   

5.
In membranes associated with purified pancreatic zymogen granules, GTP[S] elicited a concentration-dependent activation of phospholipase A2 (PLA2), which was converted to inhibition in the presence of added Ca2+. The GTP-binding protein inhibitor GDP[S] blocked both the stimulatory and inhibitory actions of GTP[S]. We conclude that in zymogen granule membranes GTP-binding proteins exert a dual regulation of PLA2 activity.  相似文献   

6.
The presence of low molecular weight GTP-binding proteins was investigated in subcellular fractions from skeletal muscle. Skeletal muscle homogenate, transverse tubules, triads, sarcoplasmic reticulum membranes, and cytosol fractions were separated in sodium dodecyl sulfate-gel electrophoresis and blotted onto nitrocellulose. The presence of GTP-binding proteins was explored by incubation of these blots with [alpha-32P] GTP. GTP labeled two polypeptides of Mr = 23,000 and 29,000 in all the fractions examined. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 29-kDa polypeptide, although both were enriched in transverse tubule fractions. A GTP-binding polypeptide of 40 kDa was also enriched in transverse tubule preparations and identified as Gi alpha by immunostaining with anti-Gi alpha. Using a blot overlay approach and [alpha-32P]GTP-labeled cytosolic components, several polypeptides were identified that interact with the 23- and 29-kDa GTP-binding proteins. Among these components were polypeptides of Mr = 60,000, 47,000, 44,000, 42,000, and 38,000, which were mainly of cytosolic origin but also associated with triads and transverse tubule membranes. The 47-, 44-, 42-, and 38-kDa polypeptides were found to be structurally related to the glycolytic enzymes enolase, 3-phosphoglyceric phosphokinase, aldolase, and glycoeraldehyde-3-phosphate dehydrogenase, respectively. The purified glycolytic enzymes specifically bound the 23- and 29-kDa GTP-binding proteins under both denaturing and nondenaturing conditions. The association of the GTP-binding proteins with these polypeptides was resistant to detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), Triton X-100, and Tween. A 23-kDa GTP-binding protein purified from chromaffin cells bound to a 157-kDa polypeptide in triads and chromaffin cell membranes. The 157-kDa polypeptide was a minor component in these membranes and not related to the subunits of the dihydropyridine receptor. In view of the proposed function of low molecular weight GTP-binding proteins in processes such as membrane communication and secretion coupling, the association of these proteins with transverse tubules and triads in skeletal muscle is discussed in terms of a role in signal transmission.  相似文献   

7.
We have studied the protein composition of the pectoralis superficialis muscle of genetically dystrophic (New Hampshire line 413) and normal control (line 412) chickens by one- and two-dimensional gel electrophoresis. A protein, referred to hereafter as the 30 kDa abnormal protein, was specifically detected in the affected muscle. It was purified to homogeneity, and its molecular properties were studied. It is a monomer with a molecular mass of approximately 30 kDa and an isoelectric point of about pI 8.4. We have screened by Western blotting a variety of muscles from line 412 and line 413 chickens for the presence of the 30 kDa protein. While the pattern of total protein is very similar in all cases, the 30 kDa protein was not detected in the pectoralis superficialis muscle of line 412 chickens. However, the immunoreactive bands were detected in the sartorius muscle and the tensor fasciae latae muscle from dystrophic and normal chickens. Interestingly, the immunoreactive bands of normal skeletal muscles are smaller in molecular weight than those of dystrophic skeletal muscles. To determine the early time sequence of the appearance of the abnormal protein, we studied muscles from embryos and post-hatched chickens at various ages. The abnormal protein was detected in dystrophic muscles as early as 15 days ex ovo and occurred throughout development up to six months ex ovo. Although the implication of the dystrophy-associated appearance of the 30 kDa protein in the affected muscle is not clear at present, it would be of particular interest to elucidate the biochemical functions of the 30 kDa protein in the affected muscle (pectoralis superficialis muscle) of genetically dystrophic chicken.  相似文献   

8.
The dormant O2(-)-generating oxidase in plasma membranes from unstimulated neutrophils becomes activated in the presence of arachidonate and a multicomponent cytosolic fraction. This process is stimulated by nonhydrolyzable GTP analogues and may involve a pertussis toxin insensitive GTP-binding protein. Our studies were designed to characterize the putative GTP-binding protein, localizing it to either membrane or cytosolic fraction in this system. Exposure of the isolated membrane fraction to guanosine-5'-(3-O-thio)triphosphate (GTP gamma S), with or without arachidonate, had no effect on subsequent NADPH oxidase activation by the cytosolic fraction. Preexposure of the cytosolic fraction to GTP gamma S alone did not enhance activation of the membrane oxidase. However, preexposure of the cytosol to GTP gamma S then arachidonate caused a four-fold enhancement of its ability to activate the membrane oxidase. This enhancement was evident after removal of unbound GTP gamma S and arachidonate, and was not augmented by additional GTP gamma S during membrane activation. A reconstitution assay was developed for cytosolic component(s) responsible for the GTP gamma S effect. Cytosol preincubated with GTP gamma 35S then arachidonate was fractionated by anion exchange chromatography. A single peak of protein-bound GTP gamma 35S was recovered that had reconstitutive activity. Cytosol preincubated with GTP gamma 35S alone was similarly fractionated and the same peak of protein-bound GTP gamma 35S was observed. However, this peak had no reconstitutive activity. We conclude that the GTP-binding protein regulating this cellfree system is located in the cytosolic fraction. The GTP gamma S-liganded form of this protein may be activated or stabilized by arachidonate.  相似文献   

9.
Myostatin is a negative regulator of skeletal muscle growth. Muscle tissue is the largest tissue in the body and influences body growth. Commercial Avian broiler chickens are selected for high growth rate and muscularity. Daweishan mini chickens are a slow growing small-sized chicken breed. We investigated the relations between muscle (breast and leg) myostatin mRNA expression and body and muscle growth. Twenty chickens per breed were slaughtered at 0, 30, 60, 90, 120, and 150 days of age. Body and muscle weights were higher at all times in Avian chickens. Breast muscle myostatin expression was higher in Avian chickens than in Daweishan mini chickens at day 30. Myostatin expression peaked at day 60 in Daweishan mini chickens and expression remained higher in breast muscle. Daweishan mini chickens myostatin expression correlated positively with carcass weight, breast and leg muscle weight from day 0 to 60, and correlated negatively with body weight from day 90 to 150, while myostatin expression in Avian chickens was negatively correlated with carcass and muscle weight from day 90 to 150. The results suggest that myostatin expression is related to regulation of body growth and muscle development, with two different regulatory mechanisms that switch between days 30 and 60.  相似文献   

10.
S Zeuzem  P Zimmermann  I Schulz 《FEBS letters》1991,288(1-2):143-146
Brefeldin A (BFA) causes rapid redistribution of Golgi proteins into the endoplasmic reticulum (ER), leaving no definable Golgi-apparatus, and blocks transport of proteins from the ER to distal secretory compartments of the cell. Using pulse-chase experiments the present study shows that BFA (1 microgram/ml) inhibits basal and CCK-stimulated protein secretion in isolated pancreatic acinar cells by 65 +/- 6% and 84 +/- 5%, respectively. In isolated permeabilized cells higher concentrations of BFA (30 micrograms/ml) were necessary to obtain inhibition of protein secretion. In parallel experiments protein secretion was stimulated by GTP (1 mM). BFA had no inhibitory effect on protein secretion in the presence of GTP, indicating that BFA might act on a GTP-binding protein. Investigating the effect of BFA on small molecular weight GTP-binding proteins we observed that [alpha-32P]GTP binding to a 21 kDa protein in a subcellular fraction enriched in ER was increased in the presence of BFA. We conclude that this 21 kDa and possibly also other GTP-binding proteins may be the molecular target of Brefeldin A in pancreatic acinar cells.  相似文献   

11.
Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.  相似文献   

12.
13.
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.  相似文献   

14.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

15.
16.
In the rabbit mesenteric arterial smooth muscle skinned by saponin, Ca2+ induced contraction in a concentration-dependent manner. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), a non-hydrolyzable GTP analogue, lowered the Ca2+ concentrations required for this contraction and increased the Ca2+ sensitivity of the skinned smooth muscle contraction. GTP gamma S alone did not induce the contraction in the absence of Ca2+. This GTP gamma S-enhanced Ca2+ sensitivity was completely abolished by an exoenzyme of Staphylococcus aureus, named EDIN, and an exoenzyme of Clostridium botulinum, named C3, both of which are known to ADP-ribosylate the rho p21 family that belongs to the ras p21-like small GTP-binding protein superfamily. The GTP gamma S-bound form of rhoA p21 overcame the inhibitory action of EDIN. smg p21B, another small GTP-binding protein, was inactive. EDIN ADP-ribosylated a protein, which was most likely to be rho p21, in the skinned smooth muscle. The GTP gamma S-bound form of rhoA p21, but not the GDP-bound form, substituted for GTP gamma S and enhanced the Ca2+ sensitivity of the skinned smooth muscle contraction. smg p21B was inactive. These results indicate that rhoA p21 is involved in the GTP gamma S-enhanced Ca2+ sensitivity of the smooth muscle contraction.  相似文献   

17.
Toyomizu M  Ueda M  Sato S  Seki Y  Sato K  Akiba Y 《FEBS letters》2002,529(2-3):313-318
Although bird species studied thus far have no distinct brown adipose tissue (BAT) or a related thermogenic tissue, there is now strong evidence that non-shivering mechanisms in birds may play an important role during cold exposure. Recently, increased expression of the duckling homolog of the avian uncoupling protein (avUCP) was demonstrated in cold-acclimated ducklings [Raimbault et al., Biochem. J. 353 (2001) 441-444]. Among the mitochondrial anion carriers, roles for the ATP/ADP antiporter (ANT) as well as UCP variants in thermogenesis are proposed. The present experiments were conducted (i) to examine the effects of cold acclimation on the fatty acid-induced uncoupling of oxidative phosphorylation in skeletal muscle mitochondria and (ii) to clone the cDNA of UCP and ANT homologs from chicken skeletal muscle and study differences compared to controls in expression levels of their mRNAs in the skeletal muscle of cold-acclimated chickens. The results obtained here show that suppression of palmitate-induced uncoupling by carboxyatractylate was greater in the subsarcolemmal skeletal muscle mitochondria from cold-acclimated chickens than that for control birds. An increase in mRNA levels of avANT and, to lesser degree, of avUCP in the skeletal muscle of cold-acclimated chickens was also found. Taken together, the present studies on cold-acclimated chickens suggest that the simultaneous increments in levels of avANT and avUCP mRNA expression may be involved in the regulation of thermogenesis in skeletal muscle.  相似文献   

18.
At initiation of cell division, FtsZ, a tubulin-like GTPase, assembles into a so-called Z-ring structure at the site of division. The formation of Z ring is negatively regulated by EzrA, which ensures only one ring at the midcell per cell cycle. The mechanism leading to the negative regulation of Z-ring formation by EzrA has been analyzed. Our data reveal that the interaction between EzrA and FtsZ not only reduces the GTP-binding ability of FtsZ but also accelerates the rate of GTP hydrolysis, both of which are unfavorable for the polymerization of FtsZ. Moreover, the acceleration in rate of GTP hydrolysis by EzrA is attributed to stabilization of the transition state for GTP hydrolysis and reduction in the affinity of GDP for FtsZ. Clearly, EzrA is able to modify the GTP hydrolysis cycle of FtsZ. On the basis of these results, a model for how EzrA acts to negatively regulate Z-ring formation is proposed.  相似文献   

19.
20.
An actin-binding protein of 20 kDa (called 20K protein) was purified from the sarcoplasmic fraction of embryonic chicken skeletal muscle. The properties of this protein were very similar to cofilin, which was discovered in porcine brain (Nishida et al. (1984) Biochemistry, 23, 5307-5313): it bound to both G- and F-actin, inhibited actin polymerization in a pH-dependent manner, inhibited binding of tropomyosin to F-actin, and had almost the same molecular size and pI as cofilin. A specific monoclonal antibody to 20K protein (MAB-22) was prepared to examine the expression and location of 20K protein during skeletal muscle development. When the whole protein lysates of embryonic and post-hatched chicken skeletal muscles were examined by means of immunoblotting combined with SDS-PAGE, 20K protein was detected in skeletal muscle through the developmental stages. Location of 20K protein in the cells differed between the embryonic and adult tissues; immunofluorescence staining of the cryosections of embryonic muscle with MAB-22 visualized irregular dot-like structures, but adult muscle sections were stained faintly and uniformly. 20K protein was present as a complex with actin in embryonic muscle, as judged by the ability to bind to a DNase I affinity column, while the same protein was free from actin in the cytoplasm of adult muscle. From these results, it is suggested that 20K protein regulates actin assembly transiently in developing skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号